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Abstract

While probabilistic circuits have been extensively
explored for tabular data, less attention has been
paid to time series. Here, the goal is to estimate
joint densities among the entire time series and, in
turn, determining, for instance, conditional inde-
pendence relations between them. To this end, we
propose the first probabilistic circuits (PCs) ap-
proach for modeling the joint distribution of mul-
tivariate time series, called Whittle sum-product
networks (WSPNs). WSPNs leverage the Whit-
tle approximation, casting the likelihood in the
frequency domain, and place a complex-valued
sum-product network, the most prominent PC,
over the frequencies. The conditional indepen-
dence relations among the time series can then
be determined efficiently in the spectral domain.
Moreover, WSPNs can naturally be placed into
the deep neural learning stack for time series, re-
sulting in Whittle Networks, opening the like-
lihood toolbox for training deep neural models
and inspecting their behaviour. Our experiments
show that Whittle Networks can indeed capture
complex dependencies between time series and
provide a useful measure of uncertainty for neural
networks.

1. Introduction
Probabilistic graphical models specify joint densities com-
pactly using conditional independencies between random
variables (RVs). When faced with time series, dynamic
Bayesian networks are commonly employed. In many ap-
plications, however, one instead often aims to infer the con-
ditional independence relations between time series them-
selves, accounting for interactions at all possible lags, lead-
ing to time series graphical models (TGMs) (Tank et al.,
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2015). Consider, e.g., the stock price changes of indus-
trial sectors shown in Fig. 1 (Left). The drop in late 2018
illustrates a critical need for new and fundamental under-
standings of the structure and dynamics of economic net-
works (Schweitzer et al., 2009).

Arguably, Dahlhaus (2000) introduced the first (undirected)
graphical model for stationary time series. Specifically, for
jointly Gaussian stationary time series, one transforms the
series to the frequency domain and estimates a Gaussian
graphical model in the resulting spectral representation. The
conditional independencies between time series are encoded
by zeros in the inverse spectral density matrix. Bach & Jor-
dan (2004) leveraged the Whittle approximation (Whittle,
1953), casting the likelihood in the frequency domain, and
Tank et al. (2015) proposed a Bayesian extension, making
use of hyper complex inverse Wishart distribution priors.
Unfortunately, using graphical models for time series mod-
eling has a number of important limitations. First, inference
is exponential in the worst case. Second, the sample size
required for accurate learning is worst-case exponential in
scope size, i.e. the subset of variables of each potential.
Third, learning requires inference as a subroutine, i.e. it can
take exponential time even with fixed scopes.

To overcome these limitations of TGMs and inspired by
the successes of deep probabilistic models for univariate
time series (Trapp et al., 2020; Melibari et al., 2016), we
introduce the first probabilistic circuit for modeling the joint
distribution of multivariate time series, called Whittle sum-
product network (WSPN). It also leverages the Whittle ap-
proximation but places a sum-product network (SPN) (Poon
& Domingos, 2011) over the frequencies. Using SPNs
in the frequency domain, however, requires different de-
composition and conditioning operations for SPNs tailored
towards complex-valued RVs—our main technical contri-
butions. The conditional independence relations among the
time series, even in a directed fashion, can then be deter-
mined efficiently in the spectral domain, see Fig. 1 (Middle).

While WSPNs feature efficient inference, learning their
structure—the structure of complex-valued SPNs—can still
be tedious and may not scale well to large number of RVs.
Therefore, we propose to “go down the deep neural road”
one step further by generating unspecialized random struc-
tures for the SPNs (Peharz et al., 2020b; Ventola et al.,
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Figure 1. Illustration of a multivariate time series and the discovered independence structures. (Left) Time series of 11 sectors from
Standard & Poor’s index. (Middle) Conditional independence structure among the sectors discovered by Whittle sum-product network.
The thickness of the edge indicates the increase of Whittle likelihood by adding this edge. (Right) Conditional independence structure
from Non-Bayesian TGM. (Best viewed in color.)

2020; Stelzner et al., 2019; Kossen et al., 2020), scalable to
millions of parameters and trainable in an end-to-end fash-
ion, even together with deep neural networks (NNs) for time
series. This results in Whittle Networks, and it opens the
likelihood toolbox for training deep neural models for time
series and for inspecting their behaviour based on probabilis-
tic grounds. Our experimental results on stock market data,
synthetic time series, MNIST, and hyperspectral images
demonstrate that Whittle Networks can indeed capture com-
plex dependencies between time series and provide a useful
measure of uncertainty for neural networks. To summarize,
we make the following contributions:

• The first probabilistic circuit for modeling the joint
distribution of multivariate time series, called Whit-
tle sum-product networks (WSPNs), by introducing
complex-valued SPNs.

• Using WSPNs, we propose deep likelihood functions
for training deep neural networks for time series in
an end-to-end fashion, called Whittle Networks. We
illustrate this by introducing Whittle Autoencoder, a
novel probabilistic autoencoder for time series.

To this end, we proceed as follows. We start off by intro-
ducing WSPNs, reviewing more related work on the fly.
Then, we show how to read off conditional independencies
from them and how to interface them with deep neural net-
works, resulting in Whittle Networks. Before concluding,
we present our empirical evaluation1.

2. Whittle SPNs: SPNs for Time Series
Neural networks have been widely used for time series pro-
cessing. For instance, multilayer perceptron (MLP) can
work as an autoencoder (AE) for univariate time series mod-
eling (Koskela et al., 1996). Similarly, Convolutional Neural

1Source code is available at: https://github.com/
ml-research/WhittleNetworks

Networks (CNN) have also been used for time series model-
ing (LeCun & Bengio, 1995). Moreover, Recurrent Neural
Networks (Connor et al., 1994) and in particular Long Short-
Term Memory (LSTM) Neural Networks (Gers et al., 2000)
have been extensively used for neural modeling of time se-
ries. However, the above neural models can not provide a
natural probability measure of the outputs.

On the other hand, there are deep generative models that
use well-defined likelihood functions. State space model
and deep neural networks are combined in Rangapuram
et al. (2018). Similarly, state space model with conditional
probability is investigated also for reinforcement learning
in Buesing et al. (2018). Kalchbrenner et al. (2017) encode
time, space, and color structure into a dependency chain to
model video sequences. However, these works can answer
to a considerably limited set of queries because they are
restricted only to forecasting and do not model the joint dis-
tribution of the complete time series. A generative approach
has been proposed in Krishnan et al. (2017) but it offers
rather limited support to exact inference.

In contrast, WSPNs lend themselves naturally to efficient in-
ference and learning as well as end-to-end training together
with deep neural networks. They also have clear probabilis-
tic semantics. In fact, WSPNs can be seen as generalized
directed acyclic graphs (DAGs) of mixture models in the
spectral domain, with sum nodes corresponding to mixtures
over subsets of variables and product nodes corresponding
to features or mixture components. Specifically, they consist
of the following two ingredients: Whittle Likelihood and
complex-valued SPNs.

Ingredient 1: Whittle Likelihood. The Whittle likelihood
models the multivariate time series in the spectral domain.
Let X = [x(1), . . . , x(T )], with x(t) ∈ Rp, be a realization
of a p-dimensional (p-D) time series with length T . For

https://github.com/ml-research/WhittleNetworks
https://github.com/ml-research/WhittleNetworks
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Figure 2. Illustration of a CoSPN modeling a density over two
complex RVs d1 and d2. Leaf node encodes a 2-D Gaussian with
mean µdk ∈ R2 and covariance matrix Σdk ∈ R2×2 over the real
and imaginary parts. The sum node

⊕
has a left (i) and a right

branch (j), the corresponding weights are wi and wj . It computes
the convex combination of its children.

t ∈ Z, x(t) is Gaussian stationary if:

E(x(t)) = µ ∀t ∈ Z (1)
Cov(x(t), x(t+ h)) = Γ(h) ∀t, h ∈ Z. (2)

X1:N = {X1, . . . , XN} are N independent realizations
of the time series. In spectral domain of each sequence,
dn,k ∈ Cp denotes the discrete Fourier coefficient of the
nth sequence at frequency λk = 2πk/T, k = 0, . . . , T − 1:

dn,k = T−1
∑T−1

t=0
xn(t)e−iλkt. (3)

Based on the Whittle approximation assumption (Whittle,
1953), the Fourier coefficients are independent complex
normal RVs with mean zero:

dn,k ∼ N (0, Sk), k = 0, . . . , T − 1, (4)

where Sk ∈ Cp×p is the spectral density matrix. For a
stationary time series, its spectral density matrix is defined
as:

Sk =
∑∞

h=−∞
Γ(h)e−iλkh. (5)

The Whittle likelihood of the N realizations is defined as:
p(X1:N | S0:T−1) ≈∏N

n=1

∏T−1

k=0

1

πp |Sk|
e−d

∗
n,kS

−1
k dn,k . (6)

The Whittle approximation holds asymptotically with large
T and it has been used in the Bayesian context.

To overcome the limitations in Whittle likelihood infer-
ence with TGMs, Whittle Networks place an SPN (Poon
& Domingos, 2011)—a tractable and expressive density
estimator—across the frequencies.

Ingredient 2: Complex-Valued SPNs (CoSPNs). A com-
plex random variable d ∈ Cp that follows complex normal
distribution has its real and imaginary parts being jointly
normal distributed. Based on the fact that the real and imagi-
nary parts are coupled, it is a more sensible idea to model the

real and imaginary parts as a pair of RVs in an SPN, which
results in Complex-valued SPNs (CoSPNs). More formally,
a CoSPN S over a set D of p complex-valued RVs is a prob-
abilistic model defined via a DAG containing three types of
nodes: input distributions (the leaves), sums and products.
All leaves of the CoSPN are density functions over some
subset Q ⊆ D of pairs of real-valued RVs. Inner nodes are
either weighted sums or products, denoted by S and P, re-
spectively, i.e. S =

∑
N∈ch(S) ωS,NN and P =

∏
N∈ch(P) N,

where ch(·) denotes the children of a node. The sum
weights ωS,N are assumed to be non-negative and normal-
ized: ωS,N ≥ 0,

∑
N ωS,N = 1. CoSPNs make use of pair-

wise Gaussian leaf nodes for modeling the pair of real and
imaginary parts of the complex RVs, assuming that the real
and imaginary parts from one complex RV are correlated.
The pairwise Gaussian leaf node is modeled using a vector
of means µdk ∈ R2 and a covariance matrix Σdk ∈ R2×2,
as illustrated in Fig. 2. With the pairwise Gaussian leaf
density of the complex RVs, CoSPN essentially encodes the
joint density p([d(R)

1 , d
(I)
1 ], . . . , [d

(R)
p , d

(I)
p ]). In analogy to

SPNs, the scope of an input distribution N in a CoSPN is
defined as the set of RVs Y for which N is a distribution
function, i.e. sc(N) := Y. The scope of sum or product
node N is recursively defined as sc(N) =

⋃
N′∈ch(N) sc(N′).

To represent a valid probability density, CoSPNs should
satisfy two structural constraints (Poon & Domingos, 2011),
namely completeness and decomposability. Specifically, a
CoSPN is complete if for each sum S it holds that sc(N′) =
sc(N′′), for all N′,N′′ ∈ ch(S). A CoSPN is decomposable
if it holds for each product P that sc(N′) ∩ sc(N′′) = ∅, for
all N′ 6= N′′ ∈ ch(P). In that way, all nodes in a CoSPN
recursively define a valid complex-valued distribution over
their respective scopes: the leaves are complex-valued dis-
tributions by definition, sum nodes are mixtures of their
children, and products are factorized, complex-valued dis-
tributions, assuming context-specific independence among
the scopes of their children.

CoSPNs feature tractable probabilistic inference. For
example, CoSPNs allow one to compute arbitrary
marginal densities: In particular, let S(x) be a den-
sity over X represented by CoSPN S, and let X̄ =
{Xi1 , . . . , XiM } be a set of RVs to be marginalized. The
marginal density over Z = X \ X̄ can be computed
as S(Z) =

∫
xi1

. . .
∫
xiM

S(xi1 , . . . , xiM ,Z)dxi1 . . . xiM .
The integrals can be iteratively swapped with sums and dis-
tributed over products in the CoSPN (Peharz et al., 2015).

Similar to Gens & Domingos (2013), learning a CoSPN
can be done by clustering over instances, treating them as
2p-D vectors, to learn sum nodes, and by non-parametric
independence test over both real and imaginary components
to learn a product node. For the pairwise Gaussian leaf case,
the non-parametric independence test needs to be adapted,
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such that two complex RVs are dependent if any of the four
combinations of the real and imaginary components show a
sort of dependency. Random-and-Tensorized SPNs (RAT-
SPNs) (Peharz et al., 2020b), instead, generate a random
tree structure and then optimize the weights in a “classical
deep learning manner”, which enables us to adapt CoSPNs
together with other deep architectures.

WSPNs = Whittle Likelihood + CoSPNs. With the Whit-
tle Likelihood and CoSPNs at hand, we are now ready to
introduce WSPNs: CoSPNs are used to build the joint com-
plex normal distribution of the Fourier coefficients of the
time series. Note that the Fourier coefficients from DFT for
real-valued sequences are Hermitian-symmetric. Therefore
the negative frequency coefficients are redundant, and in
total only TW = bT/2c+ 1 Fourier coefficients need to be
modeled.

We know from the Whittle assumption that the indepen-
dence of Fourier coefficients of different frequencies holds
for stationary time series. In general, we assume that with-
out the independent Fourier coefficients assumption, the
joint distribution still models the time series in the Fourier
domain, even with more flexibility in modeling both station-
ary and non-stationary time series. Therefore, in contrast to
TGM limitations, two more constraints can be relaxed when
modeling general time series:

• The mean of each frequency in (4) need not be 0.

• The Fourier coefficients of different frequencies need
not be independent as in (6).

With the above two relaxations, the Fourier coefficients of
both stationary and non-stationary general time series can
be modeled with WSPNs. The Whittle likelihood of the first
TW Fourier coefficients from a general time series can be
modeled with one WSPN: p(X1:N | Co) ≈∏N

n=1
p(dn,0, . . . , dn,TW−1)

def
=

∏N

n=1
p(dn), (7)

where Co denotes the structure and parameters of the
CoSPN trained from data, dn,k ∈ Cp denotes the kth

Fourier coefficients from the nth sample from data, and
dn ∈ Cp×TW denotes the first TW Fourier coefficients of
one multivariate time series.

3. Opening the Blackbox of Whittle SPN
While WSPNs are tractable, they are just computational
graphs and, hence, blackboxes w.r.t. the (conditional) inde-
pendence relations. For p-D multivariate time series, there is
great interest in finding the structure that represents the con-
ditional independence among the p components in the form
of graphs. We now show how to extract it from WSPNs.

The vanilla search-based method for structure learning of
graphical models usually consists of a structure learning
algorithm, e.g. Hill climbing (Herskovits, 1991; Gámez
et al., 2011), and a score, e.g. MDL (Rissanen, 1983). For
DAGs, if the directions of edges are predefined, the graph
can be learned efficiently via a 3-phase algorithm presented
in Cheng et al. (1997). More generally, one can employ an
order swapping algorithm (Teyssier & Koller, 2005) without
providing the order of the nodes.

Moving to Whittle likelihood, it was indeed proposed for
Bayesian structure learning in Tank et al. (2015). First, T
spectral density matrices S0:T−1 are computed from time se-
ries X1:N . As the Whittle likelihood p(X1:N | G,S0:T−1)
can be factorized given graph G, it can be maximized by
searching over graph structures. Feature-inclusion stochas-
tic search (FINCS) (Scott & Carvalho, 2008) is then applied
to search for G that maximizes the above likelihood.

With WSPN, we can proceed as follows. Denote the Fourier
coefficients from a subset s of the p components of the
time series as d{s}n , and p(d{s}n ) the marginal density. Let
G = (V,E) be a decomposable graph with vertex set V =
{v1, . . . , vp} and edge set E. For DAGs, given each node vi
and its parents PaG(vi), and the corresponding CoSPN Co
learned from time series X1:N , (7) can be factorized based
on the graph structure by chain rule: p(X1:N | G,Co) ≈

N∏
n=1

∏
vi∈V p(d

{vi∪PaG(vi)}
n | Co)∏

vi∈V p(d
{PaG(vi)}
n | Co)

. (8)

The factorization for undirected graph is similar, over
cliques and separators (Tank et al., 2015). Thus, given
time series X1:N , we first learn a WSPN that models time
series in the spectral domain. Then, we start from an empty
graphG and add edges iteratively. To add an edge, we create
a list of all possible edge candidates to form a graph, and
compute the list of Whittle likelihoods from (8), given the
obtained WSPN and each possible new graph. The edge that
mostly increases the Whittle likelihood is added to G. We
stop when adding an edge decreases the Whittle likelihood
or when there are no more edge candidates. Bayesian in-
formation criterion (BIC) (Schwarz, 1978) can be naturally
applied to handle the complexity of the graph.

4. Whittle Networks: Putting WSPNs onto
the Deep Learning Stack

Like other PCs, WSPNs can be vectorized and used within
GPU-supporting implementations (Peharz et al., 2020b;
Trapp et al., 2019; Peharz et al., 2020a). Note that the
discrete (fast) Fourier transformation (DFT) can naturally
be vectorized, too. Thus, WSPNs are differentiable and
can be trained end-to-end together with NNs, resulting in
Whittle Networks.
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Figure 3. Whittle AE, an instantiation of Whittle Networks.

Therefore, we introduce Whittle AE, an instantiation of
Whittle Networks, shown in Fig. 3. It combines a standard
AE with a proper (deep) likelihood function for time series
using WSPNs. To train the AE whose output distribution
becomes similar to its input distribution, we employ two
WSPNs alongside the AE. Each WSPN models the spectral
domain of AE input and output, respectively. The distribu-
tions of the AE input and output in the spectral domain will
be pushed closer by minimizing the Kullback-Leibler (KL)
divergence between the distributions modeled by the two
WSPNs. The combined loss consists of the reconstruction
error, two negative Whittle likelihoods of both WSPNs, and
the KL divergence between the WSPNs. In this way, we
get a simple but effective way to equip AEs with densities
and probabilistic inference. This can be used to assess how
likely the AE reconstruction originates from the input dis-
tribution. Generally, we note that Whittle Networks can be
combined with any other deep neural architecture, providing
meaningful probabilities for time series.

5. Experimental Evaluation
Our intention here is to investigate the benefits of model-
ing time series with the proposed Whittle Networks. In
particular, we investigated the following questions: (Q1)
Do WSPNs capture densities over time series better than
baselines? (Q2) Can WSPNs discover the conditional in-
dependence of time series? (Q3) Can Whittle Networks
provide meaningful probabilities for deep neural networks?

Experimental Protocol and Datasets. Stationary time se-
ries is of great interest since the Whittle approximation
which inspired us is based on the stationary assumption.
Therefore, we use two real-world market datasets acquired
from “Yahoo! Finance Data”. The first one is the index
values of 11 sectors from “Standard & Poor’s” (S&P) from
October 16, 2013 to May 24, 2019 (See Fig. 1 (Left)). The
second one is the global stock index (Stock) from 17 markets
extracted from June 2, 1997 to June 30, 1999. Both S&P
and Stock datasets are applied first with log-return transfor-
mation, assuming them to be stationary (Stărică & Granger,

2005), and then a sliding window of size 32, ending up in 44
and 50 time series instances. Simulation data from Vector
Autoregressive process (VAR) (Sims, 1980) is also used to
discover the conditional independencies. Details of the three
stationary datasets can be found in Appendix A.

With the aim of showing that Whittle Networks can deal
with not only stationary time series but also with non-
stationary processes, we employ the following synthetic
and real-world datasets for non-stationary time series. The
synthetic Sine data consists of 3 trigonometric sines with
same frequency while different phases with Gaussian noise,
2 sine series with another frequency with different phases
with Gaussian noise, and one series of pure Gaussian noise.
We shuffle the order of time series components as out-of-
domain (ood) samples. The synthetic Billiards data contains
simulations of 6 trajectories from the horizontal and verti-
cal locations of 3 balls, unnatural trajectories form the ood
set. The synthetic Mackey-Glass series (Gers et al., 2002)
consists of two channels and is used for forecasting test.
Although MNIST (LeCun et al., 1998) is not a typical uni-
variate time series dataset, it is widely used in prominent
time series processing works (Van Oord et al., 2016; Esteban
et al., 2017; Le et al., 2015). In this work, we use MNIST
also to examine the ability of Whittle Networks in model-
ing time series with high dimensionality. Finally, we used
hyperspectral images with 328 wavelengths of plants for a
qualitative analysis of anomaly detection. Each vector from
one pixel with length 328 can be viewed as a single univari-
ate time series and we aim for detecting the unhealthy areas
on the leaf. Fig. 5 (Top) shows RGB views of healthy and
unhealthy leaves with dark spots as infected areas. Details
of the non-stationary datasets are described in Appendix B.

(Q1) Modeling Time Series with WSPNs. We trained
SPNs with Gaussian leaves employing LearnSPN (Gens
& Domingos, 2013), ResSPNs (Ventola et al., 2020), and
WSPNs on all datasets. For LearnSPN and ResSPN, no pair-
wise constraint is applied when estimating independencies,
i.e., the real and imaginary parts from one complex RV are
free to split. “-Pair” uses diagonal covariance matrices to
model the real and imaginary parts independently, while “-
2d” takes full covariance matrices to jointly model the pairs
as bidimensional Gaussians. LearnSPN, WSPN-Pair, and
WSPN-2d encompass and do structure learning, while the
structure of ResSPN, ResWSPN-Pair, and ResWSPN-2d are
randomly generated. Furthermore, in the spirit of having
a neural likelihood gold standard, we make use of Masked
Autoencoder for Distribution Estimation (MADE) (Germain
et al., 2015) with Gaussian conditionals, as implemented
in Papamakarios et al. (2017), to estimate the joint prob-
ability density of the Fourier coefficients. The number of
hidden layers in MADE is set to 1 for all datasets, while
the hidden units vary from 200 to 600, depending on the
number of RVs in each dataset. Note that this comparison is
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Table 1. Average training, test (the higher the better ⇑, and best values in bold) and ood data (the lower the better ⇓, and best values in
bold) log-likelihoods. WSPNs have high likelihood on training and test data but low likelihood on ood data, with relatively a large gap.

LearnSPN WSPN-Pair WSPN-2d ResSPN ResWSPN-Pair ResWSPN-2d MADE
train ⇑ -0.47 2.65 6.67 -60.62 -148.48 -135.94 -105.91

Sine test ⇑ -0.75 1.85 5.75 -63.13 -150.90 -138.86 -108.64
ood ⇓ −∞ −∞ −∞ -5880.85 -4010.04 -4227.18 -11646865.93

train ⇑ 256.11 272.84 277.50 249.47 254.46 254.30 336.03
MNIST test ⇑ 254.99 270.40 274.42 245.67 251.74 252.54 327.22

ood ⇓ 125.19 160.29 155.76 204.93 218.25 216.01 136.98
train ⇑ 54.73 63.75 65.01 -367.83 -318.10 -213.13 -204.23

Billiards test ⇑ 52.80 54.14 54.12 -377.38 -324.78 -219.04 -252.51
ood ⇓ -1984.38 -2348.57 -2435.70 -1003.49 -1052.21 -2113.68 -89521.82

S&P train ⇑ -191.64 113.06 174.45 308.22 194.57 1831.91 359.52
Stock train ⇑ -615.76 328.90 417.81 257.03 496.07 1172.85 639.10

Data sample WSPN sample ood sample

Figure 4. Billiards trajectories from the training set (Left), WSPN
samples (Middle) and unnatural trajectories as ood samples (Right).
Earlier time is demonstrated with more transparency, i.e., the ball
starts from the most transparent side of the trajectory and moves
towards the darker side.

not fair since MADEs are highly specialized for likelihood
estimation and they cannot be easily adopted for computing
general inference and efficient sampling due to the archi-
tectural constraints necessary for holding the autoregressive
property.

As we can see from Tab. 1, WSPNs produce generally higher
likelihood for training and test sets, compared to LearnSPN
or ResSPN. Moreover, modeling the complex RV with a
full covariance matrix in the leaf node (“-2d”) provides
higher likelihood for training/test set, and lower likelihood
for ood set, compared with modeling them independently (“-
Pair”). The likelihood of ood data from WSPN is also lower,
except for MNIST data. The reason might be the image
similarity given that all digits are centered. The differences
of likelihoods are statistically significant according to a
Wilcoxon signed-rank test with p = 0.05, “-Pair” and “-
2d” perform equally better than ResSPN on MNIST and
than LearnSPN on Billiards. Additionally, WSPNs achieve
high likelihoods and it is competitive with our gold standard
MADE. On MNIST, MADE provides higher likelihoods
than WSPNs mainly because: 1) MADE is a strong and
powerful density estimator. 2) MNIST is not a proper time
series, since it has some “all zeros” rows as components in
a multivariate series.

Fig. 4 shows trajectories of the 3 balls from Billiards. An
example of real movement is illustrated in Fig. 4 (Left).
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Figure 5. Anomaly detection within hyperspectral images. (Top)
Visualization in RGB channels. (Middle) Heatmap showing the
pixel-wise likelihood (log-scale) of WSPN. Pixels with higher
value are more likely to belong to healthy areas. (Bottom) Heatmap
of SAMMIE’s reconstruction error (Kerner et al., 2019). Pixels
with higher reconstruction error are considered as anomalies. The
left two columns are healthy and the right four are inoculated.

Fig. 4 (Middle) shows trajectories after the inverse Fourier
transform of the sampled Fourier coefficients from the
WSPN trained on Billiards. The behaviours of straight-line-
moving and rebound of the balls are successfully captured
by the WSPN model. The movement of the green ball looks
very realistic: it first moves towards the upper right corner,
hits the wall, and then goes down to the left. The sample
from Billiards shows the strong power of modeling the en-
tire multivariate time series with WSPNs, without losing
the characteristics of the original time series. To provide a
comparison, ood trajectories are visualized in Fig. 4 (Right).

To illustrate this qualitatively on plants, Fig. 5 shows
heatmaps of Whittle likelihood, as well as the reconstruction
error maps got from SAMMIE (Kerner et al., 2019). As one
can see, WSPN models the healthy pixels well and is able
to give lower likelihood to pixels from infected or non-leaf
areas, while SAMMIE fails to discover some infected spots.

Conditional SPNs (CSPNs) (Shao et al., 2020) can be ap-
plied to model the conditional distribution of p(Xt | Xt−1)
in the time domain. By employing CSPNs as compo-
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Figure 6. Predictions from LSTM, CSPN, WSPN, and ground truth
(GT) on part of Mackey-Glass series.

Figure 7. Extracting conditional independencies of VAR series.
(Left) Ground truth. (Middle) Undirected graph from WSPN.
(Right) Directed graph from WSPN. With BIC dashed edges are
not generated and the final graphs perfectly match the ground truth.

nent, WSPNs can also model the conditional Whittle likeli-
hood p(dt | dt−1) to perform forecasting straightforwardly.
Given data from the past, one can compute predictions by
means of most probable explanation (MPE) queries. We
compared WSPN, CSPN, and LSTM as strong prediction
baseline on Mackey-Glass. Details of the experimental set-
tings are described in Appendix C. CSPN achieved a mean
squared error (MSE) of 0.0119, WSPN 0.0022, and LSTM
0.0014 but with slower convergence. Qualitative results are
shown in Fig. 6, one can see that WSPN performs better
than CSPN and it has a competitive MSE with LSTM. Even
if the core objective is to model the joint distribution of the
whole time series rather than computing only predictions,
WSPNs can also compute accurate forecasting. Thus, (Q1)
can be answered affirmatively, WSPNs capture densities
better than baselines.

(Q2) Conditional Independencies among Time Series.
The conditional independencies of the VAR series are de-
termined when it is created. We extract both directed and
undirected graphs from WSPN trained on VAR series to
visualize its conditional independencies. Fig. 7 shows that
WSPN successfully extracted the true conditional indepen-
dencies of a 7-D VAR series. Applying BIC helped to filter
out the edges that increase the Whittle likelihood with a
negligible increment.

Regarding real-world time series, the conditional indepen-
dencies derived from WSPNs learned on S&P and Stock are
shown in Fig. 1 and Fig. 8 respectively. The thickness of an
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Figure 8. Extracting conditional independencies of stock. (Left)
Directed independence structure among the 17 markets discovered
by WSPN. (Right) Undirected independence structure derived with
(Bayesian) TGM directly taken from Tank et al. (2015).

edge represents the increase of Whittle likelihood obtained
by adding that particular edge. We set the maximum number
of predecessors and successors to 2. For the comparison, we
adopted hill climbing for learning (non-Bayesian) TGMs by
using the OpenMarkov toolbox (Arias et al., 2019).

Regarding S&P data, the directed independence structure
(DAG) shown in Fig. 1 (Middle) unveils interesting correla-
tions among 11 sectors. WSPNs discover the correlations
between, e.g., Information Technology and Financials, In-
dustrials and Materials, Financials and Materials. Looking
at the original time series in Fig. 1 (Left), one can observe
that the indices of Materials and Financials seem to be quite
synchronized, thus, the correlation between these two sec-
tors makes sense. At the same time, the (non-Bayesian)
TGM failed to discover some correlations, e.g., between
Industrials, Energy, and Utilities, cf. Fig. 1 (Right).

WSPNs may also help to discover the conditional inde-
pendencies (DAG) of the global stock market. From
Fig. 8 (Left), it is clear that the central and western European
countries (AT, UK, IT, FR, GE, CH, SP) are well clustered.
Moreover, Germany, France, and the UK are among the
core components of the European cluster. Most parts of
the graph follow the geographic relationship, except for CA
and BE. One explanation could be that WSPN discovers the
hidden correlations of stock indices between those French-
speaking countries. In contrast, (Bayesian) TGM (Right)
correctly finds the correlations among Asia-Pacific markets
(US, CA, HK, JP, AU), which are not discovered by WSPN.
However, the graph structure of the European countries is
less informative compared to the WSPN one. Both models
fail to discover the correlation of JP and HK with others.
This is indeed more difficult to discover because both are
geographically far from the other markets.

Since the synthetic Sine dataset is relatively simple, both
WSPN and non-Bayesian TGM produce the same DAG: two
edges connecting the 3 components with the same frequency,
another edge between the two components with another
frequency, and the Gaussian noise being independent. The
graph is relatively simple, thus, it is shown in Appendix D.

Overall, Tab. 2 summarizes the likelihoods of the condi-
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Table 2. WSPNs provide higher log-likelihoods given the extracted
graph. Thus, WSPNs discover better conditional independence
structures (DAGs) than non-Bayesian TGM.

S&P Stock Sine
WSPNs 101.22 297.86 1.15

non-Bayesian TGM 88.50 288.94 1.15

Table 3. Average log-likelihoods of MNIST data from Whittle Net-
work. Low density values for instances that do not follow the
training density are marked in bold.

WSPN Input WSPN Output
train 295.49 411.32
test 295.22 411.10
outlier1 239.78 401.54
outlier2 48.84 397.58

tional independence structures discovered via WSPNs. Both
WSPNs and non-Bayesian TGMs achieve the same perfor-
mance on Sine, as the discovered structures are actually the
same. On S&P and Stock, however, WSPNs achieve better
performance, i.e., the conditional independencies they dis-
covered fit data better. From the results on various datasets,
WSPN shows its ability to discover the conditional inde-
pendencies from both stationary and non-stationary time
series. In general, the results clearly provide an affirmative
answer to (Q2): WSPNs are able to discover the conditional
independencies of time series, even better than baselines.

(Q3) Whittle Networks: Deep Likelihoods for (Deep)
Neural Networks. Unfortunately, the probability distri-
butions of deep neural networks may generally not be well-
calibrated (Guo et al., 2017). In order to investigate the
ability of WSPNs to provide meaningful and calibrated
probabilities for deep neural networks, we considered the
Whittle AE outlined before and shown in Fig. 3. It consists
of two WSPNs and one AE in between. The AE consists
of an MLP with the following number of neurons for each
layer: 128− 64− 16− 2− 16− 64− 128, using sigmoid
as the activation function. We vectorized the WSPNs as de-
scribed above using RAT-SPN (Peharz et al., 2020b). This
way, they can easily be integrated and optimized end-to-end
together with the AE. The RAT-SPN hyperparameters, see
Peharz et al. (2020b) for details, can be found in Appendix
E. We trained the Whittle AE on MNIST by taking each
image row as one univariate time series, in other words,
each image forms one multivariate series.

The average log-likelihood of our selected training and test
data for the input WSPN and output WSPN, see Fig. 3, are
summarized in Tab. 3. As one can clearly see, the input
WSPN provides high likelihood for training and test data

Te
st

O
ut

lie
r1

O
ut

lie
r2

Figure 9. Qualitative results of Whittle AE. Visualization and like-
lihood (log-scale) of input (In) and output (Out) from (Top) MNIST
test set (digits “0-4”), (Middle) outlier1 (MNIST test set digits “5-
9”), and (Bottom) outlier2 (Fashion-MNIST test set). The Whittle
AE provides higher likelihood to digits that are from the test set
and lower likelihood to both outlier sets.

(digits “0-4”), while providing low likelihood for outlier1
(digits “5-9”). It is even lower for outlier2 (images from
Fashion-MNIST (Xiao et al., 2017)), a very different do-
main. Surprisingly, the WSPN that models the output of
the AE also produces relatively lower likelihood for outputs
(reconstructions) when using “outliers” as input.

Generally speaking, unlikely outputs of deep neural net-
works, such as ood samples, can be detected by looking at
the rather low likelihood provided by the WSPNs. Fig. 9
depicts various inputs and their corresponding outputs from
the Whittle AE. As one can see, it is difficult to tell from
the reconstructed images if the input is normal or rather
an ood sample. However, the log-likelihoods of input and
reconstructed output images clearly indicate that both ood
sets have lower likelihood. For instance, the autoencoder
wrongly reconstructs a pullover (first image of outlier2) as
a digit “3” (second image of outlier2). Thus, both input
and output WSPNs are able to recognize the ood and its
reconstruction by assigning a low likelihood—especially on
the input image, even when the reconstructed image looks
like an authentic digit “3”. Although it is almost impossible
to judge from the output image “3”, both likelihoods from
input respectively output images illustrate that the input may
be an ood sample and that the corresponding output is not
trustworthy. More results from Whittle AE can be found
in Appendix F. Overall, these results clearly provide an af-
firmative answer to (Q3): Whittle Networks can provide
meaningful probabilities for deep neural networks.

6. Conclusion
We introduced the first complex-valued SPN, called CoSPN,
tailored for complex-valued normal distribution. In particu-
lar, using CoSPNs and the Whittle likelihood approximation,
we proposed the first probabilistic circuits for multivariate
time series, modeling temporal information as well as the
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conditional independence of multivariate time series im-
plicitly in the spectral domain. Being able to compute the
likelihood of time series in a tractable fashion is critical in
developing practical and scalable likelihood functions for
deep neural networks of time series. Our experimental re-
sults demonstrated that the resulting Whittle Networks can
indeed provide meaningful probabilistic measures for deep
neural networks. Providing a natural measure of uncertainty
makes deep neural networks easier to interpret and to use
for non-AI-experts, in particular when it comes to decision-
making. Exploring this for other deep architectures is the
most interesting avenue for future work, but one should
also investigate more advanced structure learning methods
for complex-valued SPNs in general. Regarding complex
values, one could bring the idea of CoSPNs to other models
like normalizing flows or wavelet networks. Furthermore,
based on the introduced conditional WSPN for forecasting,
we envision the exploration of dynamic WSPN or Whittle
RNN as interesting future directions.
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