
Generative Clausal Networks:
Relational Decision Trees as Probabilistic Circuits

Fabrizio Ventola1⋆, Devendra Singh Dhami1 ⋆, and Kristian Kersting1,2

1 Department of Computer Science, TU Darmstadt, Germany
2 Hessian Center for AI and Centre for Cognitive Science, Darmstadt, Germany
{ventola, devendra.dhami, kersting}@cs.tu-darmstadt.de

Abstract. In many real-world applications, the i.i.d. assumption does not hold
and thus capturing the interactions between instances is essential for the task at
hand. Recently, a clear connection between predictive modelling such as deci-
sion trees and probabilistic circuits, a form of deep probabilistic model, has been
established although it is limited to propositional data. We introduce the first
connection between relational rule models and probabilistic circuits, obtaining
tractable inference from discriminative rule models while operating on the rela-
tional domain. Specifically, given a relational rule model, we make use of Mixed
Sum-Product Networks (MSPNs)—a deep probabilistic architecture for hybrid
domains—to equip them with a full joint distribution over the class and how (of-
ten) the rules fire. Our empirical evaluation shows that we can answer a wide
range of probabilistic queries on relational data while being robust to missing,
out-of-domain data and partial counts. We show that our method generalizes to
different distributions outperforming strong baselines. Moreover, due to the clear
probabilistic semantics of MSPNs we have informative model interpretations.

Keywords: Statistical relational learning · Tractable probabilistic models · Rule
learning

1 Introduction

Relational decision trees (RDTs) [3] have been the workhorse in modern inductive logic
programming for many years and form the backbone of several relational machine
learning models. Recent work on the interpretation of Decision Trees as generative
models [9] shed light on the surprising yet intuitive tight connection between robust
discriminative models and powerful tractable generative models. This paves the way
for the application of several methods and techniques designed for Decision Trees to
the world of Probabilistic Circuits and vice-versa. However, in many real-world appli-
cations, the i.i.d. assumption does not hold and capturing the interactions between in-
stances is fundamental for an arbitrary task such as classification or generation of new
samples. Inspired by this, we aim to revisit RDTs using the techniques of principled
propositionalization and a probabilistic interpretation.

Statistical Relational Learning [17, 11] models have been proposed to overcome the
rigidity of well-known first-order rule learners such as TILDE [3] since they cannot
⋆ Equal contribution
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naturally deal with uncertainty. However, most of these models such as Markov Logic
Networks [34] and Relational Dependency Networks [29] are difficult to scale and their
inference process is generally intractable. Recent approaches have tried to tackle in-
tractability by taking advantage of Arithmetic Circuits [10] representations that, under
certain conditions, especially by imposing particular constraints on their structure, can
guarantee to provide tractable inference for a set of probabilistic queries. Nevertheless,
these models have been mostly designed for propositional data and contributions for
relational domain [14, 21, 28] are rather limited since they need specific input represen-
tation and make strong assumptions on the type of data distributions.

Specifically, inspired by [9] and considering the aforementioned limitations of SRL
models, we introduce the first connection from relational rule models, specifically rela-
tional decision trees, to probabilistic circuits, precisely Sum-Product Networks (SPNs).
With this aim, we present Generative Clausal Networks (GCLNs) as tractable genera-
tive models that can model the joint distribution of counts of the firing of rules (clauses)
and can be powerful discriminators at the same time. As a discriminator, GCLNs are
both accurate and robust to missing data. As probabilistic generators, they can be used
for accurate data imputation, out-of-domain (OOD) detection, sample new data and
predicate invention. Moreover, thanks to the probabilistic semantics, GCLNs are easy
to interpret. GCLNs can also be seen as alternatives to relational Naive Bayes [22, 14]
since instead of learning a naive Bayes over clauses as features, we first learn all rules
using an RDT and then turn it into joint distribution.

We make the following contributions: 1. We propose the first set of models that
take advantage of RDT structure to learn powerful probabilistic circuits. 2. We take
advantage of SPNs to learn both conditionals (discriminative) and joint (generative)
models. 3. We show that our model is robust to noise, OOD data and missing values
and takes advantage of both worlds of relational models and probabilistic circuits. 4.
We show that our model is interpretable due to the use of first-order logic and SPNs.

2 Background and Related Work

Probabilistic Circuits: Sum-Product Networks (SPNs) are tractable deep density esti-
mators [33] and they are part of the family of Probabilistic Circuits. SPNs can be seen
as a deep extension of a particular class of Arithmetic Circuits [10] that encode proba-
bility distributions. They have been successfully applied on domains such as computer
vision [41], natural language processing [7] and speech recognition [31].

Definition of SPNs. An SPN S, see figure 1, is a computational graph defined by a
rooted DAG, encoding a probability distribution3 PX over a set of RVs X = {X1, . . . ,
Xn}, where inner nodes can be either weighted sum or product nodes over their chil-
dren (graphically denoted respectively as

⊕
and

⊗
), and leaves are valid distributions

defined on a subset of the RVs Z ⊆ X . Each node n ∈ S has a scope scope(n) ⊆ X,
defined as the set of RVs appearing in its descendant leaves. The subnetwork Si, rooted
at node i, encodes a distribution over its scope i.e. Si(x) = PX|scope(i)(x) for each

3 We are not strict on “density” vs. “distribution”.
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Fig. 1. A graphical interpretation of Generative Clausal Networks (GCLN). They are Sum-
Product Networks (SPNs), where sum nodes (in yellow, weights are omitted here for simplic-
ity) act on the number of true ground instances of clauses, while product nodes (in blue) can be
view as realizing predicate conjunctions. Leaves consist of two types. Poisson distributions (in
pink) encode exchangeable distribution templates and Bernoulli (in green) models the target class
(some are omitted for simplicity). The symbol 1() represents an indicator function. The root node
and its children model the joint distribution P (X, Y ) where X is the set of features and Y is the
target variable. In this example, the root node introduces a latent variable that can be interpreted
as a binary literal (best viewed in color).

x ∼ X|scope(i). Each edge (i, j) emanating from a sum node i to one of its children j
has a non-negative weight wij , with

∑
j wij = 1. Weighted sum nodes represent a mix-

ture over the probability distributions encoded by their children, while product nodes
represent factorizations over contextually independent distributions. Thus, an SPN can
be viewed as a deep hierarchical mixture model, where the hierarchy is based on the
scope of the nodes w.r.t. the whole set of RVs X . In a valid SPN, the probability as-
signed to a given state x of the RVs X can be read out at the root node, and will be
denoted S(x) = PX(X = x).

Inference using SPNs. Given an SPN S, S(x) can be computed by evaluating the net-
work bottom-up. When evaluating a leaf node i concerning variable Xj , Si(xj) corre-
sponds to the probability of that state Pi(Xj = xj). The value of a product node corre-
sponds to the product of its children’s values: Si(x|scope(i)) =

∏
i→j∈S Sj(x|scope(j));

while, for a sum node, its value corresponds to the weighted sum of its children’s values:
Si(x|scope(i)) =

∑
i→j∈S wijSj(x|scope(j)). All the exact marginal and conditional

probabilities (with different amount of evidence), the exact partition function, and even
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approximate MPE queries and states can be computed in time linear in the size of the
network i.e. its number of edges [30].

Structure Learning of SPNs. The prototypical structure learning algorithm for SPNs is
LEARNSPN [16] which is a greedy learning schema to infer both the structure and the
parameters of an SPN from data by executing a top-down structure search in the space of
tree-structured SPNs. The algorithm first tries to find context-specific independencies
among random variables (RVs) by means of a statistical test. When successful, it learns
a product node where children represent the discovered context-specific factorization.
When the variable splitting fails, the algorithm tries to slice the data matrix by rows
i.e. clustering instances. In this case, the sum node weights represent the proportion of
instances that fall in the relative cluster. Termination happens when a data slice contains
only one random variable or when the number of instances is lower than a threshold µ.

Relational Learning: Most of the real-world data is relational in nature and has to
be converted to a propositional form in order to use classic machine learning algorithms.
Although standard, this can result in a significant loss of information. Thus, there has
been a lot of research in developing methods that can handle relational data. TILDE [3]
are logical decision trees based on the divide-and-conquer strategy and can be used to
obtain relational clauses from the learned trees. Various methods [19, 27] that propose
relational learning and inference by using ensembles of these TILDE trees were also
proposed. SPNs are inherently propositional, and model examples with an independent
and identically distributed (i.i.d) assumption. Learning SPNs for relational domains [28]
relaxed the i.i.d assumption by defining a set of object classes to model the relationship
among various instances, along with learning a probability distribution over the features
themselves. The key idea behind learning a relational SPN is the use of an aggregation
statistic over variables to take advantage of symmetries existing in relational data.

Probabilistic Circuits for Count Data: Sum-Product Networks were originally
proposed for univariate parametric distributions either in the form of Bernoulli or Gaus-
sian distributions at leaves [33]. The state-of-the-art structure learning algorithm LEARN-
SPN and part of its variants have been developed with the assumption that the data orig-
inated from a specific form of a multivariate distribution. Since a considerable amount
of real-world data follows the Poisson distribution, recent developments have been fo-
cused on learning the structure of an SPN by assuming count data such as Poisson SPNs
[25]. Several other models [39, 13] have also been proposed that pertain specifically to
count data.

3 Probabilistic Circuits over Logical Clauses

Using the expressive power of first-order logic, ILP systems can learn complex pro-
grams and discover relations between data instances. This is useful in many domains
and real-world applications where i.i.d. assumption does not hold. Despite the expres-
sive power and clear formalism, ILP systems cannot deal with uncertainty and, in gen-
eral, do not provide tractable inference and learning. SRL models, such as MLNs, have
been devised to enhance first-order logic learners with probability in order to deal with
uncertainty and be more flexible. Still, the major part of SRL models do not allow for



Generative Clausal Networks: Relational Decision Trees as Probabilistic Circuits 5

Fig. 2. An overview of learning the GCLN model (TILDE tree → rules → Mixed SPN on a
conjunction of rules). The learned GCLN model is discriminative, generative and interpretable.

out-of-the-box tractable inference and tractable approximations have limited expressive
power and generalize poorly. Thus, we draw a connection from logical clauses and their
counts to Tractable Probabilistic Models [8] that allows, given an arbitrary first-order
learner, to:

– Answer in linear time a wide range of probabilistic queries e.g. how likely one or
more rules can fire together and how many times do the rules fire.

– Learn a powerful Tractable Probabilistic Discriminator that expresses confidence
about its predictions and that is also robust to missing and out-of-domain data.

– Generate samples and new predicates.

Generative Clausal Networks. The generative clausal networks (GCLNs) capture the
correlations among non mutually exclusive rules which can also share predicates and
fire simultaneously. To learn the GCLNs, we start by learning a set of first-order rules
by employing TILDE, a well-known top-down inducer of logical decision trees and
we keep the counts on how many times a clause fires given a certain data sample. To
obtain the counts, for every rule the first and last entity are instantiated and then all
the predicates that completely satisfy the partially grounded rules are obtained. Then,
we learn a joint distribution over these counts together with the target by encoding such
distribution by means of a prominent deep tractable density estimator tailored for hybrid
domains i.e. MSPNs [26]. Figure 2 shows the overview to learn the GCLN model.

To model the class, we make use of a Bernoulli distribution; it is either true or false
with some probability p. For the clausal features, however, we have to be a bit more
careful. They are Exchangeable Distribution Templates [28]. That is, each clausal fea-
ture is a function that takes all the ground instances of the clause as a set of random
variables {X1, . . . , Xn} as input (n is unknown a priori), and returns a joint probabil-



6 F. Ventola, D. Dhami, and K. Kersting

ity distribution P with respect to which {X1, . . . , Xn} is exchangeable4. All ground
instance of a clause c share the same binomial distribution with value p associated with
the clause. Since we do not know n apriori, we assume that the expectation p · n =: λ
is constant, 0 < λ < ∞. The Exchangeable Distribution Template then returns the
following distribution:

lim
n→∞

(
n

k

)
pk(1− p)n−k = lim

n→∞

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k

= lim
n→∞

n(n− 1) . . . (n− k + 1)

k!

(
λ

n

)k (
1− λ

n

)n−k

= lim
n→∞

λk

k!

(
1− λ

n

)n−k

=
λke−λ

k!
.

In other words, the expected rate of a rule firing equals λ, and we get overall a Poisson
distribution. Although here we assume that domain elements are exchangeable, our
method is rather flexible and it works also when the logical rules contain constants.

Actually, MSPNs allow one to abstract from parametric forms and combine SPNs
and piecewise polynomial distributions to learn probabilistic circuits that provide exact
and tractable inference without making specific distributional assumptions. In fact, to
learn the SPN structure and parameters, MSPNs make use of nonparametric decompo-
sition and conditioning steps using the Renyi Maximum Correlation Coefficient. Taking
into account that in our setting we deal mostly with count data i.e. how many times a rule
fires– and binary targets, we learn an MSPN by adopting the splitting test tailored for
Poisson distributions from PSPNs [25]. In other words, we employ a clustering strategy
based on the Renyi Maximum Correlation Coefficient and a variable independence test
designed for Poisson distributions. We assume that the independence test is performed
between Poisson RVs while clustering can include the target modeled as Bernoulli and
therefore, it is better for the latter to be able to deal with arbitrary distributions. Thus,
our variant can be seen as a generalization of PSPNs and it could be easily adapted and
applied on other types of data distributions.

Interpreting GCLNs. Sum-Product Networks have been shown able to learn a useful
representation of the data [38]. Thanks to the clear probabilistic semantics of prob-
abilistic circuits such as SPNs we can easily interpret the learned model in different
ways. First, considering that learning the MSPN splits the data matrix by rows and by
columns, one could easily check these slicing operations performed during structure
learning. By analyzing the learned SPN structure the propositional probabilistic inter-
pretations can be extended for relational data. For example, sum nodes create clusters of
instances that fire rules similarly while product nodes work similarly to a logical and.
Second, an interpretation can be obtained by checking the samples the learned SPN
generates at the sub-trees rooted at different inner nodes.

4 A set of random variables is finitely exchangeable with respect to a joint distribution P , if all
permutations of the variables result in the same joint probabilities. Note that finite exchange-
able does not require independence; the random variables can have strong dependencies.
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Consider a simple sub-tree rooted to a product node Si having two Poisson distri-
butions (with different scope) as children. This product node models how likely and
how many times these two rules fire together “locally” in a specific context shaped
by the sum nodes present along the path from the root node to Si. Additionally, sum
nodes introduce latent variables [30] that can be seen as introducing literals in the rela-
tional domain. Meanwhile, product nodes are defining new predicates by conjunction of
other predicates i.e. given the conditioning done by sum nodes and splitting performed
by product nodes one can interpret these operations as manipulating and creating new
predicates. A graphical representation of this interpretation is depicted in figure 1.5 For
example, the density encoded by the product node

⊗
(in blue in the computation graph)

is: PX1,X2,Y (X1, X2, Y ) =

PX1
(X1 = 1) · PX2

(X2 = x2) · PY (Y = 0) · 1(¬Y ∧X1)

And for its two siblings, from left to right:

PX1,X2,Y (X1, X2, Y ) =PX1
(X1 = 0) · PX2

(X2 = x2)·
PY (Y = 0) · 1(¬Y ∧ ¬X1)

PX1,X2,Y (X1, X2, Y ) =PX1
(X1 > 1) · PX2

(X2 = x2)·
PY (Y = 0) · 1(¬Y ∧X1 > 1)

While the right branch of the root node
⊕

encodes:

PX1,X2,Y (X1, X2, Y ) =PX1(X1 = x1) · PX2(X2 = x2)·
PY (Y = 1) · 1(Y = True)

The weights of the sum nodes are proportional to the training instances that fall in the
contexts they define e.g. regarding the root node, the weights are proportional to the
amount of negative instances for the left branch and to the amount of positive instances
for the right branch. They indicate how the two main populations of the distribution i.e.
the negative and the positive samples, are distributed and encoded down the tree. On a
perfectly balanced data set with a binary target the weight of each root sum node branch
would be 0.5 (see figure 3).

As mentioned before, an interpretation can be obtained by generating samples from
sub-trees rooted at the nodes that one would like to inspect. Therefore, considering the
ability to generate samples in linear time, together with the clear semantics, GCLN is
able to provide clear interpretations of the learned models w.r.t. the well-known counter-
parts like Relational Decision Trees or boosting methods where one could end up with
very large models that are hard to interpret and thus are limited to compute predictions.

Missing Data Prediction. Dealing with missing data is a crucial and active area of
research for both Machine Learning and Data Science with several open questions
[2]. When dealing with missing values, task-specific methods such as MICE [4] or
KNN [1] are generally used. Despite their popularity, these methods are not easily

5 In the figure and in the following text 1() represents an indicator function.
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scalable, can be time-consuming and difficult to tune. Furthermore, often they do not
provide confidence of their predictions, they could ignore the interactions with target
variables and, mostly, they are able to perform only a single task. To overcome these
shortcomings, probabilistic approaches that make use of tractable density estimators
for handling missing data have been recently proposed [9, 18] and can handle miss-
ing data “for free” without being trained specifically for that task but are restricted
to propositional data. With GCLN one can gain these benefits in the relational do-
main. Our model can classify a sample having partial observation regarding the rule
that it fires and for a given sample predict the rule counts that are not available i.e.
missing data imputation. In general, being able to accurately classify samples with
missing predicates or also predicting the counts is not a trivial task. Recently, this is
getting a lot of attention in practical applications e.g. in case of privileged features
[37], fairness or privacy issues one can access a set of predicates only at training time
and access them at test time could be too expensive or even not allowed. For exam-
ple, one can classify with a certain confidence if two drugs interact given the rule:

TargetAntagonist(B, C) ∧ EnzymeSubstrate(A, C) =⇒ Interacts(A, B)
even if EnzymeSubstrate(A, C) is not available or one can predict a disease if

PositiveBloodCheck(A) ∧ HasDiabetes(A) ∧ HighBloodPressure(A) ∧ Tomogra-
phy(A, T) ∧ PositiveManualCheck(T) =⇒ HasDisease(A)

even if Tomography(A, T) and PositiveManualCheck(T) are too expensive to obtain.

Out-of-domain detection. Another relevant task in machine learning is out-of-domain
detection. This task is useful in many real-world applications such as computer vision
[6] and NLP [35, 15]. The goal is to distinguish between in-domain and out-of-domain
data and this could be useful e.g. for being robust to adversarial attacks, another rele-
vant application [23]. Within a probabilistic framework, one can consider the likelihood
values to discriminate between in-domain and OOD data [32, 40]. With GCLNs, this
question can be answered by considering the likelihoods of data. Similar to missing
data prediction, this comes “for free” i.e. without training the model explicitly for the
task. Thus, GCLNs are powerful and flexible models that can perform several relevant
tasks in the relational domain by answering a wide range of probabilistic queries.

4 Experiments

We aim to show our connection from Relational Decision Trees to Tractable Statisti-
cal Relational Inference and show that this leads to generative models that can act also
as more accurate classifiers and are easier to interpret. We aim to answer the follow-
ing questions: (Q1) Are GCLNs accurate discriminators? (Q2) Can GCLNs deal with
missing data i.e. can they compute accurate predictions with missing data? Are GCLNs
accurate probabilistic predictors for missing data imputation? (Q3) Are GCLNs able
to perform out-of-domain detection? (Q4) Can GCLNs provide easy interpretations by
means of their clear probabilistic semantics? (Q5) Can GCLNs take the best out of both
propositional and relational worlds i.e. can GCLNs perform better than propositional
and relational models being tractable?
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All results are cross-validated with 5 folds and averaged over 5 different seeds to
mitigate randomness. Since we are dealing with rule counts, there can be spurious rule
firings that we can capture as well which leads to outliers, so we identify and move
them to the training folds so the model is more robust. In fact, keeping them in the test
set results in an “optimistic” bias in performance evaluation [5].

Datasets. We use 4 balanced relational data sets. Drug-Drug Interaction (DDI) [12]:
consists of 78 drugs obtained from DrugBank6. The data set has 15 relations and the
target is Interactions between drug entities. Protein-Protein Interaction (PPI) [20]:
has 7 relations and is obtained from Alchemy. The target is the interaction relation
between two protein entities. NELL Sports [24]: consists of information about players
and teams and obtained from Never Ending Language Learner. It has 6 relations and
the task is to predict whether a team plays a particular sport. CiteSeer [20]: consists
of publication citations for Alchemy. It has 17 relations and the task is to predict the
author of a citation.

(Q1) Probabilistic Classification. After splitting the data into training and test set, we
use the default hyper-parameters of MSPNs7 except µ = 100. We compute the predic-
tions i.e. ground target atoms as results of MPE queries, observing the counts of test
samples. We compared GCLN (denoted as GCLN-P for clarity) and its binary vari-
ant GCLN-B that considers only if a rule fires or not, with several well-known high-
performance propositional (Logistic Regression (LR), Gradient Boosting (GB), Neural
Networks with 3 hidden layers (NN), Decision Trees (DT)), relational (TILDE) and
statistical-relational (RDN-Boost and MLN-Boost) models. The results are shown in
table 1. GCLNs outperform the other models in the majority of data sets and have
comparable performance on CiteSeer. This is due to the particular shape of the data
set which consists of 15K instances and 9 features and is more likely to have spuri-
ous instances harder to discriminate. It is important to remark that, compared to the
statistical-relational baselines, GCLNs provide general tractable—and exact in most of
the common cases—inference. While compared to non-statistical models, GCLNs can
provide also meaningful probabilities and interpretations, and they can be employed for
several tasks as shown in the rest of the section. Thus, we can answer (Q1) affirmatively,
GCLNs are accurate discriminators.

(Q2) Inference with Partial Clausal Counts. We want to test whether GCLNs are robust
to missing data by: 1) predict the class of test instances with a variable amount of
missing features, 2) missing data imputation, and 3) predict the class of test instances
with partially observed counts i.e. during testing the clause might not fire always and
thus we do not have the true counts.

For 1), we compute the class prediction accuracy with GCLNs removing a varying
percentage of features at random at test time. Figure 4 shows that GCLNs are accu-
rate even with a considerable amount of missing features and it degrades gracefully on
CiteSeer. The improvement on PPI is probably due to the presence of noisy/redundant

6 www.drugbank.ca
7 https://github.com/SPFlow/SPFlow
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Fig. 3. Top levels of GCLN learned on DDI. GCLNs have clear semantics, the root sum node
is clustering by label (balanced dataset) while the rest of the computation graph is encoding the
different aspects of the distribution e.g. Rule #7 distributes differently basing on the label (i.e. the
root node branch) while Rule #1 and #5 could fire many times for a small population of negative
samples (consider the sum node weights along the path that brings to the sub-tree rooted at Sl,2

and the corresponding parameters λ).

features, considering no data preprocessing was done. Table 2 shows that, when the
30% of features are missing, GCLNs still perform strongly.

Regarding 2), we compared GCLNs with two standard data imputation methods:
MICE and kNN8. Table 3 shows the accuracy as Mean Squared Error for the imputa-
tion of 30% of missing features chosen at random. The results show that GCLNs are
competitive with task-specific state-of-the-art methods without being trained specifi-
cally for the task.

For 3), since GCLNs employ Poisson distributions, we can answer queries such as
P (X > k) i.e. how likely can a rule fire more times additionally to the observed count.
To answer such queries, we propagate the computed probabilities

P (X > k) = 1−
∑k

i=0
P (X = i)

from the leaves to the root, given the Poisson leaf parameters. This way, GCLNs can
also compute predictions and perform classification with partial knowledge. To see how
accurate are GCLNs in these cases, we picked two of the most discriminative rules

8 Both Scikit-learn implementation with default hyperparameters.
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Table 1. Classification results of baselines compared to GCLN. The 1st 4 classifiers are proposi-
tional, the next 3 are purely relational and the last 2 are our models. In most of the cases GCLN
outperforms the baselines. Furthermore, in the same cases, this happens also when employing
Bernoulli distributions (GCLN-B). When comparing GCLN-P and GCLN-B one can clearly see
that modelling counts with Poisson distributions indeed improves performances (denoted ↑).

Data Methods Accuracy AUC-ROC AUC-PR Data Methods Accuracy AUC-ROC AUC-PR

DDI

LR 93.79 87.62 83.64

NELL

LR 83.96 58.90 28.27
GB 86.77 86.17 67.95 GB 87.69 75.28 48.07
NN 87.54 85.03 69.21 NN 88.26 74.42 48.35
DT 85.52 83.22 65.12 DT 87.27 71.77 45.71

TILDE 72.52 73.43 70.79 TILDE 81.48 86.27 78.23
RDN-B 75.54 82.87 83.13 RDN-B 81.26 88.47 83.41
MLN-B 63.80 79.83 78.40 MLN-B 60.54 89.44 85.30
GCLN-B 85.05 70.57 70.84 GCLN-B 80.74 38.72 23.15
GCLN-P 92.22 ↑ 87.53 ↑ 83.81 ↑ GCLN-P 89.83 ↑ 89.44 ↑ 56.39 ↑

PPI

LR 78.13 81.54 52.44

CiteSeer

LR 76.33 83.78 53.30
GB 77.21 78.25 49.54 GB 96.05 97.21 87.24
NN 76.94 75.75 47.49 NN 96.50 96.88 88.10
DT 76.47 77.52 48.71 DT 95.33 96.79 85.38

TILDE 62.20 62.87 58.27 TILDE 91.47 83.33 73.45
RDN-B 67.15 72.84 74.02 RDN-B 94.72 97.11 89.23
MLN-B 54.87 74.39 73.34 MLN-B 81.98 94.67 80.54
GCLN-B 79.72 82.75 59.43 GCLN-B 77.18 71.34 41.20
GCLN-P 81.56 ↑ 91.16 ↑ 80.08 ↑ GCLN-P 86.42 ↑ 71.57 ↑ 42.57 ↑

Table 2. Class prediction performance with 30% missing clauses.

Data Accuracy AUC-ROC AUC-PR
DDI 89.90± 0.035 79.23± 0.036 75.00± 0.040

PPI 84.77± 0.025 89.18± 0.024 79.83± 0.040

NELL 86.06± 0.054 79.96± 0.063 47.30± 0.092

CiteSeer 68.09± 0.103 50.69± 0.016 32.51± 0.013

(e.g. rule #1 and #7 for DDI, see figure 5) and reduced the values of the counts by
20%. Table 4 shows that GCLNs can be accurate discriminators even when the most
discriminative rules have underestimated counts and we can answer (Q2) affirmatively.
GCLNs are not only robust in case of noisy or redundant features but are also beneficial
with partial knowledge.

(Q3) Out-of-domain detection. We want to test whether GCLNs are robust to and can
detect out-of-domain data. To this aim, we take the regular (in-domain) test data in-
stances and we flip the binary target variable value of those to generate out-of-domain
test data sets. Then, we compute the average log-likelihoods of these sets. For in-domain
data the higher the log-likelihood the better, while for out-of-domain data the lower the
better. We run a comparison with Discrete Flows, a state-of-the-art neural density esti-
mator [36]. As one can clearly see in table 5, GCLNs assign, on average, remarkably
lower log-likelihood to out-of-domain data compared to the one for in-domain test data,
and lower than the one which Discrete Flows assign to out-of-domain data. This strong
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Fig. 4. Average test accuracy varying the
amount of missing features. GCLNs are accu-
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tures is missing.

0 1 2 3 4 5 6 7
Rule ID

0

20

40

60

80

100

120

140

C
o

u
n

ts

Rule counts on DDI

positive

negative

Fig. 5. Rule counts on DDI for each label i.e.
no interaction and interaction between drugs.

Table 3. Missing data imputation MSE with 30% missing clauses.

Data kNN MICE GCLN
DDI 37.41± 3.751 37.25± 3.451 40.72± 3.794

PPI 2.40± 3.451 1.44± 1.748 3.22± 4.320

NELL 18.53± 28.900 10.80± 16.644 42.58± 40.612

CiteSeer 0.76± 0.090 0.65± 0.011 1.02± 0.039

signal shows that GCLNs are effective in detecting out-of-domain data. Being able to
perform out-of-domain detection also makes GCLNs more robust to potential adversar-
ial attacks. Thus, we can answer (Q3) positively.

(Q4) Model Interpretation. We inspect the model interpretability by looking at the
structural characteristics of the learned models and their parameters. We discovered that
the root sum node of the SPNs does a high-level discrimination between instances, and
respectively sub-populations of the distribution and thus discriminates between negative
and positive examples. This is also consistent with the interpretation of deep models
where the upper layers encode more abstract concepts. Similar observations can be done
for the following layers where common patterns on how the counts distribute “locally”
for both negative and positive samples are encoded down the SPN tree. For example,
on DDI, a considerable group of positive instances has all the features equal to 0 (no
rules fired) while several negative instances have all the features equal to 0 except the
last one. This is a common pattern for negative samples i.e. when only the last rule fires
one or more times. Figure 3 shows the top levels of the GCLN that performs the best on
the training set. Some example rules learned for DDI are:
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Table 4. Prediction with partially observed counts.

Data Accuracy AUC-ROC AUC-PR
DDI 85.93± 0.042 94.11± 0.020 90.83± 0.015

PPI 42.65± 0.025 87.70± 0.063 83.09± 0.074

NELL 85.76± 0.058 63.02± 24.26 30.32± 0.092

CiteSeer 72.96± 0.014 50.00± 0.000 27.04± 0.089

Table 5. Average test log-likelihoods for in-domain data (the higher the better) and OOD (the
lower the better). To create test OOD data we flip the target value of the test instances. One can
see that GCLNs are also good OOD detectors, in fact, the log-likelihood of OOD data is much
lower compared to the log-likelihood of in-domain instances, and also lower than the one which
Discrete Flows assign to OOD data.

GCLN Discrete Flows
Data In-domain OOD In-domain OOD
DDI −9.02± 0.431 −21.55± 6.124 −6.92± 0.194 −6.95± 0.194

PPI −7.91± 2.056 −8.61± 0.956 −6.98± 0.409 −6.93± 0.415

NELL −21.37± 4.969 −23.02± 3.131 −11.81± 0.775 −12.24± 0.750

CiteSeer −5.17± 0.122 −124.42± 23.824 −4.26± 0.200 −4.36± 0.200

Rule #1: Transporter(C, A) ∧ Transporter(C, B) =⇒ Interacts(A,B)
Rule #3: Transporter(C, A) ∧ EnzymeInhibitor(A, D) ∧ EnzymeSubstrate(B, D) ∧
TransporterSubstrate(A, C) ∧ TransporterInducer(A, E) =⇒ Interacts(A,B)
Rule #7: TargetAntagonist(B, C) ∧ EnzymeSubstrate(A, C) =⇒ Interacts(A,B)

One can see that the top levels are capturing the high-level concepts in data where e.g.
Rule #7 is likely to fire more many times for positive samples. The explanation is that
the rule fires when the same protein acts as an antagonist for one drug and as a substrate
for another i.e. they are more likely to interact. This is also confirmed by looking glob-
ally at how the rule counts distribute for different labels in figure 5. For example, one
can see that the rules #7, #5 and #3 are very discriminative. Such interpretations can be
provided also when computing predictions (see Q1) and used as explanations for XAI.
Therefore, we can answer (Q4) positively.

(Q5) Ablation Study. We compare GCLNs with TILDE and GCLN-Bernoulli to check
whether considering the rule counts is beneficial instead of the binary counterpart where
we consider only if a rule fires or not and we model this by means of Bernoulli distri-
butions. In this context, for clarity, GCLN-Poisson is an alias of GCLN. Looking at
table 1 we can see that GCLN-Poisson outperforms TILDE in all cases (up to 31% rel-
ative increase on PPI) except for CiteSeer. GCLN-Bernoulli has competitive accuracy
performance when compared with the other methods and it outperforms them on PPI.
However, GCLN-Poisson outperforms GCLN-Bernoulli in all the cases. This means
that GCLNs can take the best out of the two worlds by improving upon the relational
model and when considering only when a rule fires or not. Moreover, in most of the
cases, it outperforms all the propositional models and answers (Q5) affirmatively.
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5 Conclusion

We introduce GCLNs and have drawn a connection from relational models to tractable
probabilistic models that allow to compute general tractable inference, provide mean-
ingful probabilities and have clear semantics that foster interpretability. Besides, GCLNs
can act as both deep tractable generative model and accurate discriminator that is ro-
bust to missing and partially observed features, and can be used conveniently also for
out-of-domain detection. Future work includes extending our model to the open-world
domain and make use of multiple distributions. Encoding more relational models as
probabilistic models thereby providing tractability is an important future direction.
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