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ABSTRACT
Apple recently revealed its deep perceptual hashing system Neu-
ralHash to detect child sexual abuse material (CSAM) on user de-
vices before files are uploaded to its iCloud service. Public criticism
quickly arose regarding the protection of user privacy and the sys-
tem’s reliability. In this paper, we present the first comprehensive
empirical analysis of deep perceptual hashing based on NeuralHash.
Specifically, we show that current deep perceptual hashing may
not be robust. An adversary can manipulate the hash values by ap-
plying slight changes in images, either induced by gradient-based
approaches or simply by performing standard image transforma-
tions, forcing or preventing hash collisions. Such attacks permit
malicious actors easily to exploit the detection system: from hiding
abusive material to framing innocent users, everything is possi-
ble. Moreover, using the hash values, inferences can still be made
about the data stored on user devices. In our view, based on our
results, deep perceptual hashing in its current form is generally not
ready for robust client-side scanning and should not be used from
a privacy perspective.1
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1 INTRODUCTION
In 2020, the US National Center for Missing & Exploited Children
(NCMEC) received over 21 million reports of online child sexual
exploitation, an increase of 28% from 2019 [19]. Child sexual abuse
material (CSAM) is no niche phenomenon and must be pursued and
prevented. With millions of users uploading pictures and other me-
dia to online platforms, there is an unmanageable flood of data. One
approach to efficiently analyze this amount of data is to transform
the images into a lower-dimensional space by extracting image-
specific features. These compact representations enable an efficient
search in and comparison of high-dimensional data. In this paper,
we will focus on deep perceptual hashing that computes short bit
sequences of fixed-length, the so-called hashes or fingerprints, for
multimedia content. Hashing generally describes a deterministic
transformation of data into short bit sequences. Perceptual hashing
aims to assign similar hashes to images with similar visual features.
Recent deep perceptual hashing algorithms use neural networks
for feature extraction. Perceptual hashing algorithms differ signifi-
cantly from traditional cryptographic hashing algorithms, which
aim to produce widely differing hashes for minor input changes,
the so-called avalanche effect.

Apple recently announced its NeuralHash [26] system, a deep
perceptual hashing algorithm for client-side content scanning. The
approach focuses on identifying CSAM content in user files up-
loaded to Apple’s iCloud service. Apple has made several assur-
ances about privacy and security, such as a low risk of accounts
being falsely flagged and restricting its access to private data. More
detailed information on NeuralHash is provided in the official tech-
nical summary [26]. According to Apple, only images uploaded
to the iCloud servers will be hashed and compared against a hash
database of known CSAM material. The hash databases are pro-
vided by NCMEC and other child protection agencies and are only
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available in encrypted form on the user devices. While Apple com-
missioned various expert opinions on the security of the system
from independent researchers [5, 20, 41], there has been a lot of
public criticism of the NeuralHash approach [1, 34, 43]. Criticism
is directed not only at possible privacy violations but also at the
system’s reliability. So far, however, there has been a lack of com-
prehensive analyses, at least publicly, of the core of the perceptual
hashing process, the hash computation itself.

The European Union (EU) presented in 2020 their strategy [9] to
become more effective in fighting child sexual abuse. The strategy
specifically refers to end-to-end encryption and calls for technical
solutions that allow companies to detect and report CSAM material
transferred in encrypted communication systems. The subsequent
EU regulation 2021/1232 [39], which also faces criticism [6], estab-
lishes temporarily limited rules with the sole purpose of allowing
service providers to use specific technologies for the processing
of personal and other data to the extent necessary to detect and
report CSAM material. Without the regulation stating specific tech-
nical details, it can be assumed that hash-based client-side scanning
approaches could be a way to achieve this. Similarly, the UK gov-
ernments’ Online Safety Bill [18] suggests a comparable direction
and establishes new ways to regulate online content to prevent the
distribution of harmful material.

A recent paper [1] by cybersecurity researchers and encryption
system inventors outlines and critiques the potential security and
privacy risks of client-side scanning technologies. The authors ar-
gue that even if the initial goal of these systems is only the detection
of clearly illegal content, tremendous pressure to expand the scope
of application will arise with time. People would then have little
chance to resist the expansion of the system or prevent its abuse.

In this paper, we investigate the perceptual hashing components
of NeuralHash, in particular, the embedding neural network and
the hashing step. It might be to some extent common knowledge
that neural networks are susceptible to various kinds of attacks.
However, we are convinced that it is important to demonstrate
that this susceptibility is not only interesting from a researcher’s
point of view but actually affects systems used by millions of users
who might not be aware of the risks of these systems. We further
want to emphasize that by using neural networks with the ability to
compute gradients, most of the attacks are rather easy to perform,
exposing various risks to manipulate the systems. Our focus lies
on NeuralHash because it is the first prominent representative to
shift content detection from the server-side to user devices. This
approach poses additional major risks and insecurities, such as
causeless algorithmic surveillance of users. We show that deep per-
ceptual hashing has various downsides when applied to real-world
large-scale image detection. Our research aims to point out draw-
backs of deep perceptual image hashing, support the development
of more robust systems and encourage a discussion on the general
deployment of this technology. NeuralHash merely acts as a current
real-world example in this case.

We proceed as follows. In Section 2, we first introduce deep
perceptual hashing together with the specifics of NeuralHash and
a general overview of attacks against neural networks. Our first
adversarial setting in Section 3 then sheds light on the possibility
to create hash collisions with minor visual image changes. In Sec-
tions 4 and 5, we show that the hash computation is susceptible

to gradient-based and gradient-free image transformations. In our
fourth adversarial setting in Section 6, we demonstrate that a hash
value itself actually contains information about its corresponding
image and might leak information about the content on user de-
vices. We conclude our work by a discussion of our results and their
implications in Section 7, followed by a summary in Section 8.

Before diving into the details, we want to make the following
two statements:

(1) We explicitly condemn the creation, possession, and distribu-
tion of child pornography and abusive material and strongly
support the prosecution of related crimes. With this work,
we in no way intend to provide instructions on how to by-
pass or manipulate CSAM filters. In turn, we want to initiate
a well-founded discussion about the effectiveness and the
general application of client-side scanning based on deep
perceptual hashing.

(2) We have no intention to harm Apple Inc. itself or their inten-
tion to stop the distribution of CSAM material. NeuralHash
merely forms the empirical basis of our work to critically
examine perceptual hashing methods and the risks they may
induce in real-world scenarios. Even though this system is
not in production yet, we contacted Apple and made sure
they are aware of the possible issues with NeuralHash.

2 BACKGROUND
We start by formally defining a perceptual hashing system, describ-
ing the characteristics of NeuralHash, and giving an overview of
security-related attacks against neural networks.

2.1 Perceptual Hashing and NeuralHash
Perceptual hashing algorithms, e.g., Apple’s NeuralHash [26], Mi-
crosoft’s PhotoDNA [38] and Facebook’s PDQ [17], aim to compute
similar hashes for images with similar contents and more divergent
hashes for different contents. In recent years, various deep hash-
ing algorithms based on convolutional neural networks have been
proposed [35, 36, 51, 55]. They all rely on deep neural networks
to first extract unique features from an image and then compute a
hash value based on these features. In the following, we introduce
the basic deep perceptual hashing approach, before describing the
specifics of NeuralHash. Figure 1 gives an overview of the hash
computation steps, which we now explain in detail.

We define a (perceptual) hash function H : RH×W ×C → {0, 1}k
that maps an image x to a k-bit binary hash. Let hi (x) fur-
ther denote the partial hash function for the i-th hash bit, i.e.,
H (x) =

(
h1(x), . . . ,hk (x)

)
. Perceptual hashing algorithms usu-

ally consist of two components. First, a shared feature extractor
M(x) : RH×W ×C → Rm extracts visual features from an image x
and encodes them in a feature vector z ∈ Rm . This resulting fea-
ture vector z is an abstract numeric interpretation of the image’s
characteristic features.

Next, locality-sensitive hashing (LSH) [21, 27] is used to assign
close feature vectors to buckets with similar hash values. Among
other LSH methods, random projection can be used to quickly
convert the extracted features into a bit representation. For each of
the k bits, a (random) hyperplane is defined in the hashing matrix
B ∈ Rm×k .
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Figure 1: NeuralHash pipeline as deployed on user devices. The pipeline consists of an embedding network and a locality-
sensitive hashing (LSH) step. The embedding network maps the preprocessed images into an abstract feature representation
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Figure 2: Locality-sensitive hashing (LSH) scheme. Each hy-
perplane divides the space into two parts, with a bit state
{0, 1} assigned to each side. The polytopes constrained by
the hyperplanes are called buckets. Each bucket is assigned
a unique binary hash code based on its relative position to
each hyperplane. All data points in the same bucket are as-
signed the same hash code.

The bit value hi (x) is set by checking on which side of the i-th
hyperplane feature vector z lies. In practice, the feature vector z
is first transformed into y = B · z with y ∈ Rk by calculating the
product of the hashing matrix and the embedding. The real-valued
vector y is then finally converted to a bit vector by applying a
Heaviside step function to each element yi . The result is a binary
hash vector H (x) containing k bits. For the figures in this paper,
we represent the computed hashes in their equivalent, compact
hexadecimal representation. We visualized the basic concept of
LSH in a 2D case with three random hyperplanes in Figure 2. Points
with the same color are assigned to the same bucket and result in
the same hash.

To compare the similarity and distance between two hashes,
we define the normalized Hamming distance of two given binary
hashes x and y as δ (H (x),H (y)) = 1

k
∑k
i=1 |hi (x) − hi (y)|. In other

words, δ describes what percentage of bits in the two hashes differ. It
allows quantifying the distance between two hashes and analyzing
their proximity. For brevity, we refer to it simply as the Hamming
distance in this paper.

Figure 1 illustrates the algorithmic pipeline of NeuralHash, which
we now describe in more detail. NeuralHash [26] expects resized
RGB input images with shape 360 × 360 × 3 within the pixel range
[−1, 1]. The embedding network M is based on a modified Mo-
bileNetV3 [25] architecture with 1.8 million parameters. The net-
work has been trained in a self-supervised training scheme with
a contrastive loss. The idea behind contrastive learning [23] is to
create a positive and negative pair of samples for each training
image, the so-called anchors. For the positive pair, the anchor is a
transformed version of the training image itself so that it remains
perceptually similar, e.g., by scaling or cropping. The negative pair
is built up by selecting a perceptually different image, e.g., from
another class. A neural network is then trained to output close
feature vectors z for the positive pairs and more distant vectors for
negative pairs.
Closeness is usually described by the cosine of the angles between
the feature vectors. Unfortunately, Apple does not state any ad-
ditional details on training data, loss functions, or hyperparame-
ters. The embedding network produces feature vectors z of length
m = 128. The hashing matrix B has shape 128 × 96 and, conse-
quently, defines 96 hyperplanes. Therefore, the final hashes have a
fixed length of k = 96 bits. For our experiments, we extracted the
neural network as well as the hashing matrix used by NeuralHash
from a Mac running macOS Big Sur Version 11.6.

2.2 Attacks Against Neural Networks
To put our work into context, we briefly introduce common attacks
against neural networks. Most similar to our gradient-based hash at-
tacks in Sections 3 and 4 are adversarial examples [8, 10, 14, 44, 45].
They apply precisely tuned perturbations to images that are hardly
perceivable to humans but lead to misclassifications. Most attacks
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compute the gradients of the output with respect to a model’s input
and perform one [22] or many [37], possibly greedy [40], optimiza-
tion steps to force the model’s outputs to specific values. While our
attacks are not directly based on a specific algorithm for adversarial
examples, our first two adversarial settings are motivated by their
general findings and algorithmic approaches and can be seen as a
form of creating targeted and untargeted adversarial examples in a
perceptual hashing setting. In both settings, the adversary perturbs
an image only until the optimization goal is achieved, a similar ap-
proach was introduced by Carlini and Wagner [8]. Our Edges-Only
and Few-Pixels evasion attacks are further in the spirit of sparse
adversarial examples [13, 40, 56] that try to change as few pixels as
possible.

While much work has been done on the general vulnerability of
neural networks to adversarial attacks, little work has been pub-
lished on the vulnerability of deep hashing functions. As a first
step, targeted [4, 46, 47, 52] and untargeted [53] adversarial attacks
against deep hashing-based retrieval systems were proposed. The
goal of these attacks is to manipulate input images in a way that
the target system retrieves objects with a specific target label or ob-
jects that are semantically irrelevant to the original inputs. Another
work [12] demonstrated the susceptibility of various image hashing
functions against gradient-based collision attacks. Similar works
investigated the robustness of non-deep perceptual hashing algo-
rithms against adversarial attacks [24, 28] and their robustness [15]
against visible image modifications. Other research has focused on
recovering the original images from the supposedly anonymous
real-valued image hashes by training a deep neural network to
reconstruct inputs, given their hash values [48]. However, they
only investigated the de-hashing of non-deep perceptual hashing
algorithms.

Until now, there is no comprehensive work on the technical
vulnerabilities from a machine learning perspective of NeuralHash
or client-side scanning based on deep perceptual hashing yet. How-
ever, a few proof-of-concept implementations to create single hash
collisions on NeuralHash exist [3, 30, 31] but did not provide any
systematic or in-depth vulnerability analysis. Our work aims to fill
this research gap and help to weigh the privacy benefits and po-
tential threats. We improve the optimization procedure and further
introduce an SSIM penalty term to reduce the visual conspicuities
of our attacks. Overall, the attacks proposed in this paper focus
primarily on demonstrating the actual vulnerabilities of deep per-
ceptual hashing. However, each attack also acts as a baseline for
future attacks and defenses.

3 ADVERSARY 1 – HASH COLLISION
ATTACKS

In our first adversarial setting, we investigate the creation of hash
collisions. We perturb images so that their computed hashes match
predefined target hashes. This issue holds several explosive scenar-
ios in reality. Given a set of target hashes from the (CSAM) hash
database, an adversary can create fake images whose hashes match
those in the database without containing any sensitive material at
all. Distributed across many devices, this may lead to a large num-
ber of false-positive alarms in the (possibly partly human) detection

system and, as a consequence, result in the framing of innocent
users or distributed denial of service (DDoS) attacks.

Another worrisome scenario could be that service providers,
governments, or other powerful organizations either add additional
hashes to the database or manipulate ordinary images that show po-
litical or social content that is undesirable to them, such as govern-
ment critics or LGBTQ+ supporters. By spreading such manipulated
images through social media, they might end up on the devices of
supporters of these groups. Identification, surveillance, and perse-
cution of these people are then possible by detecting hash collisions
with the database. This poses a great danger, especially for people
in states with restricted fundamental rights or totalitarian regimes.

Even without access to the hash database, which governments,
after all, might have, an adversary could simply collect its own
CSAM material and compute its hashes. Assuming a large enough
database, the adversary could obtain, at least, some share of the
true database hashes. Figure 3 shows a manipulated image from a
protest march that results in the same hash value as a non-related
target image. For this paper, we created a surrogate hash database
with dog images that acts as a list of images that should be detected
by the system.

Technical Realization. In this setting, the adversary has full access
to the perceptual hashing function with the ability to compute
gradients and knows at least a share of the hashes from the database.
The goal is to manipulate a given image so that its hash matches
any hash from the hash dataset. To create hash collisions, we first
computed the hash of an input image xorig and took the target hash
Ĥ from the (surrogate) hash database with the smallest Hamming
distance to the computed hash of xorig . After defining the target
hash Ĥ = (ĥ1, . . . , ĥk ), we directly optimized the input image x =
xorig such that its binary hash value approaches Ĥ . For this task,
we defined a Hinge loss

LHinge(x , Ĥ ) =
1
k

∑k

i=1
max{0,d − yi ·ψ (ĥi )} (1)

with d ≥ 0 describing the margin to the hyperplanes and y =
B · M(x) with y ∈ R96 being the real-valued hash output before
binarization. The operation ψ (ĥi ) = sign(ĥi − 0.5) replaces each
0-bit in the hash vector by −1. In our experiments, we set d = 0 to
optimize only until the hash value of the optimized image matches
Ĥ . This is achieved when the signs of yi and ψ (ĥi ) match at all k
positions. By setting d > 0, the distance to the LSH hyperplanes
could be increased, leading to more robust image hashes. Alterna-
tively, an MSE loss might be used for the optimization. However, in
our experiments, we found the Hinge loss to facilitate the attacks.

Furthermore, we added a structural similarity (SSIM) [49] penalty
term to reduce visual conspicuities between an optimized image
and its original counterpart. The structural similarity (SSIM) is
defined as

SSIM(x ,y) =
(2µx µy +C1)(2σxy +C2)

(µ2x + µ
2
y +C1)(σ 2x + σ

2
y +C2)

. (2)

For two images x and y, the parameters µi and σ 2i denote the
mean and variance of each image’s pixels. Further, σxy denotes
the covariance of x and y. The constants C1 and C2 are added
for numerical stability and are set to C1 = 10−4 and C2 = 9 · 10−4,
respectively, in our experiments. The closer SSIM ∈ [0, 1] is to 1, the
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Figure 3: We manipulated the original image [50] to have the same hash as the target image (Adversary 1). The manipulated
image is visually hardly distinguishable from the original since the (normalized) differences are small. Still, the manipulated
image is assigned the same hash as the visually completely different target image. This demonstrates the practicability and
danger of collision attacks.

SR ℓ2 ℓ∞ SSIM Steps
90.81% 20.8136 ± 7.97 0.3120 ± 0.22 0.9647 ± 0.03 1190 ± 1435

Table 1: Evaluation metrics (mean + std) for our hash colli-
sion attack computed on an ImageNet subset.

more similar x is to the original image without perturbations. We
computed the SSIM, weighted by parameter λ, in each optimization
step between the optimized image x and its unmodified counterpart
xorig to improve the image quality. We note that deviations from
the original image can also be penalized with Lp-norm distances or
more advanced similarity metrics, such as LPIPS [54].

In total, we attempted to solve the following optimization prob-
lem:

min
x

LHinge(x , Ĥ ) − λ · SSIM(x ,xorig)

s.t. H (x) = Ĥ

x ∈ [−1, 1]H×W ×C .

(3)

Experimental Setup. For our analyses, we created a surrogate
hash database by hashing all 20,580 dog images from the Stan-
ford Dogs dataset [29]. We then performed our attacks by modi-
fying the samples on the first 10,000 samples from the ImageNet
ILSVRC2012 [11, 42] test split.

We used the Adam optimizer [32] to directly optimize x . We
further set λ = 100 and stopped the optimization when either
H (x) = Ĥ was satisfied or aborted after 10,000 iterations. If we did
not stop the optimization process when H (x) = Ĥ is fulfilled, the
image quality might be further improved due to the SSIM term.

Results. Table 1 states our collision attack results. The success
rate (SR) indicates the share of images whose hashes have success-
fully been changed. We further state the mean ℓ2 and ℓ∞ distances
between xorig and its optimized counterpart x to quantify pixel-
wise image changes. We also computed the mean SSIM values to
take the image quality into account. Steps denote the mean number
of optimization steps performed until a hash collision occurred.

We could force hash collisions in about 90% of all images, demon-
strating the real applicability of the attack. The visual salience of the
modifications varies in strength. Most manipulated images contain
some patches of color, which are sometimes conspicuous but often
hardly noticeable. Figure 3 shows such an example where the visual

differences between the original and manipulated images are small.
We expect that hyperparameter tuning and a careful selection of
input images might further improve the success rate and visual
indistinguishability in real scenarios.

In summary, we demonstrated that hash collisions can easily be
forced in NeuralHash and might build the base for serious attacks
targeting the service provider or, even worse, persecution of polit-
ical opponents. While some of the introduced image changes are
visible, they are barely noticeable in most images, as also the SSIM
values indicate.

4 ADVERSARY 2 – GRADIENT-BASED
EVASION ATTACKS

Next, we investigate how robust NeuralHash is and if we can change
the hash of any image by perturbating it. This is also called a detec-
tion evasion attack and aims to evade detection of sensitive material
through hash comparison by an automated system. A perceptual
hashing algorithm used to identify sensitive material should be
robust to small image changes to provide reliable results.
Two kinds of image manipulations are plausible: optimization-
based approaches that compute image-specific perturbations and
transformation-based approaches that transform an image using
simple procedures provided by standard image editors. Non-robust
perceptual hashing algorithms would make it easy to hide sen-
sitive material from detection and call into question the overall
effectiveness of such systems.

In this section, we follow an optimization-based approach and
compute gradient-based perturbations that aim to alter the hash
of an image with minimal differences from the original one. We
propose three different attacks: Standard, Edges-Only, and Few-
Pixels. Our Standard attack allows changes to all parts of an image.
The Edges-Only attack first detects the edges in an image and then
restricts the manipulation to the edge pixels. For the Few-Pixels
attack, we attempt to change as few pixels of an image as possible.

Technical Realization. In our second setting, the adversary again
has full access to the perceptual hashing function and tries to manip-
ulate an input image so that its hash value differs from the original
image’s hash. The goal is to avoid detection by comparison with
the hash database. To change the original hash H̃ = H (xor iд) =
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Original Standard Attack Edges-Only Attack Few-Pixels Attack

66c59537ba80d95baef5d496 66c5953fba88d95baef5d496 66c59537ba88d95baef5d496 66c59537ba88d95baef5d496

Figure 4: Visualization [2] of our gradient-based evasion attacks (Adversary 2). The added perturbations are hardly visible,
even changing a single pixel leads to a hash change. Normalized differences are visualized below. Black marks unmodified
image parts.

(h̃1, . . . h̃k ) of a given input image xorig , we used a negative mean
squared error (MSE) loss to increase the hash discrepancy between
an image xorig and its manipulated counterpart x as

LMSE(x , H̃ ) = −
1
k

∑k

i=1

(
σ (c ỹi ) − h̃i

)2
. (4)

We make the binarization step differentiable by replacing it with
a sigmoid function σ (x) = 1

1+e−x . To push the sigmoid values closer
to zero and one, we scaled its inputs by factor c . In our experiments,
we set c = 5. For a stable optimization, we normalized the matrix-
vector producty = B·M(x) by ỹ = y

max ( ∥y ∥2,ϵ )
and set ϵ = 10−12 for

numerical stability. For each attack, we optimized until a minimal
Hamming distance δ0 between x and xorig is exceeded. As with
Adversary 1, we also added an SSIM penalty term weighted by
hyperparameter λ to reduce visual conspicuities.

The full optimization goal can be formulated as

min
x

LMSE(x , H̃ ) − λ ∗ SSIM(x ,xorig)

s.t. δ (H (x), H̃ ) > δ0

x ∈ [−1, 1]H×W ×C .

(5)

For the Edges-Only attack, we first applied a Canny edge detec-
tor [7] in the greyscale version of an image. We then only allowed
changes in the set of edge pixels by applying a binary mask to the
gradients during optimization.

As for our Few-Pixels attack, we started by selecting a single
pixel to optimize by taking the pixel with the highest absoluteLMSE
loss gradient value across all three color channels. We then again
applied a binary mask to the gradients and optimized for N steps.
If the hash did not change, we added another pixel to the pixel set
and again optimized for N steps on all pixels of the set. Additional
pixels were greedily selected by their absolute LMSE loss gradient
values. We repeatedly added more pixels and modified the set of

Attack Standard Edges-Only Few-Pixels

SR 100.00% 99.95% 98.21%
ℓ2 0.7188 ± 0.28 1.3882 ± 1.37 2.9100 ± 2.06
ℓ∞ 0.0044 ± 0.00 0.0841 ± 0.07 0.8298 ± 0.25
SSIM 0.9999 ± 0.00 0.9996 ± 0.00 0.9989 ± 0.00
Steps 5.4006 ± 4.98 150.2414 ± 113.96 3095.0 ± 3901

Table 2: Evaluation metrics (mean + std) for our gradient-
based evasion attacks computed on an ImageNet subset.

selected pixels until at least one hash bit flipped or a threshold of
150 pixels has been reached. A similar greedy approach is used by
JSMA [40] to create adversarial examples.

Experimental Setup. We performed our evasion attacks on the
first 10,000 ImageNet test samples. We used the Adam optimizer to
directly optimize an image x . We applied a decaying weight for the
SSIM term and set λ = 5 · 0.99step , where step denotes the number
of optimization steps already performed. By decaying the weight,
we avoided that the optimizer getting stuck in local minima in some
cases. For the Standard and Edges-Only attacks, we performed a
maximum of 1,000 optimization steps.

In the Few-Pixels attack, we set λ = 0 and, therefore, removed
the SSIM term. The optimization is aborted after 150 pixels without
a hash change. In all three attacks, we set the minimum Ham-
ming distance δ0 = 0 and, consequently, stopped each attack when
H (x) , H̃ .

We also can force our attacks to produce larger perturbations
and move a sample even further away from its original hash in
terms of the Hamming distance by setting δ0 > 0. We repeated our
Standard attack with minimal Hamming distances δ0 ∈ [0, 0.5] and
increased δ0 in steps of 0.05.
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Figure 5: We performed the Standard evasion attack (Adversary 2) with a varying minimum Hamming distance δ0, which can
also be interpreted as the minimum percentage of hash bits to flip. Metrics are relative to the results for δ0 = 0, as stated in
Table 2. For example, an ℓ2 value of 10 means a ten times higher average ℓ2 distance between xorig and the manipulated image
compared to the average distance when the first bit flips. Below the graph, we state the optimization results for a random
image at increasing Hamming distances.

Results. Table 2 states the results for our gradient-based hash
change attacks with δ0 = 0. We rely on the same metrics as used for
our Adversary 1. The success rate (SR) indicates the share of images
whose hashes could be changed before the maximum number of
iterations or pixels has been reached. All three attacks were able
to change the hash value of an image in the large majority of the
cases. While the Standard Attack changed the hashes of all images,
the Edges-Only and Few-Pixels attacks only failed in a few cases.
Probably the optimization space in these attacks was too restricted,
and the restrictions could be relaxed to achieve higher success rates.

The distances between the original and manipulated images are
quite low, and the mean SSIM values are close to one, demonstrating
that minor perturbations are sufficient to alter an image’s hash.
Figure 4 illustrates the effectiveness of our attacks and shows that
the changes are hardly visually perceivable. The Standard attack
only needs about five optimization steps on average to force at least
a single hash bit to flip. In the Few-Pixels attack, only 21.5 pixels
were changed on average, 0.017% of all pixels. All gradient-based
attacks in this work can also be applied to images before resizing
them into a square since most resizing operations, such as bilinear
interpolation, are differentiable.

We plot the Standard attack results for increasing δ0 in Figure 5.
While the number of optimization steps required and the ℓ2 and ℓ∞
distances increase proportionally, the SSIM only decrease slightly,
0.96 on average for δ0 = 0.5, a flip of more than half of the bits, after
all, indicating that even for larger Hamming distances the visual
quality decreases only slightly. For all values of δ0, we achieved a
success rate of 100%.

Our results in this adversarial setting demonstrate that hash
changes can easily be forced by gradient-based attacks. For humans,
the induced changes are hardly perceivable. It is also possible to
limit image manipulations to edges and even single pixels to keep
the number of changes small. Our analysis shows that NeuralHash
is in no way robust against gradient-based evasion attacks and
questions the general robustness of neural network-based hashing
approaches.

5 ADVERSARY 3 – GRADIENT-FREE EVASION
ATTACKS

We now extend our analysis from the previous section and inves-
tigate the robustness of NeuralHash against basic, gradient-free
transformations as provided by standard image editors. The more
robust the hashing algorithm is, the less susceptible it is to image
transformations, such as rotations, translations, or color changes.
Many of these operations, e.g., flipping and color changes, can
be reverted. This makes them particularly interesting to investi-
gate since these transformations could be used to evade detection
systems by first applying a transformation to bypass the system
and then reverting them to reconstruct the original image. Unlike
gradient-based attacks, the adversary does not need to have direct
access to the hash algorithm or any expertise in computer science.
Using a simple image editor is sufficient to perform the attacks.

Technical Realization. Unlike previous adversarial settings, we
now investigate the case in which the adversary has black-box
access to the perceptual hashing function and can only observe
the input-output relation without the ability to compute gradi-
ents. The goal is still to avoid detection by comparison with
the hash database. We applied different image transformations
T (x) : RH×W ×C → RH×W ×C independently to the input images
x . We then obtained the perceptual hash of each transformed im-
age T (x) and calculated the Hamming distance δ (H (T (x)),H (x))
between the hashes of the transformed and the original images. For
transformations with additional hyperparameters, such as degrees
in rotation, we computed results for varying parameter values to
take the transformations’ strength into account. All investigated
transformations kept the image size and removed image parts were
filled with black color.

Experimental Setup. We evaluated the robustness of NeuralHash
on the 1,281,167 images from the ImageNet training split. To save
computing resources, we varied most hyperparameters with an
exponentially increasing step size. We investigated the following
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transformations independently: translation, rotation, center crop-
ping, downsizing, flipping, changes in the HSV color space, contrast
changes, and JPEG compression.

Results. We plot the effects of various image transformations on
the Hamming distance in Figures 6 and 7. Our experimental results
show that NeuralHash is susceptible to most, but not all, image
transformations. This non-robust behavior leads to significant hash
changes, even if the content of an image was only slightly modified
from a human perspective. We now discuss the average effects of
different transformations in more detail.

As stated in Figure 7, image translations had a high impact on
the hash calculation. Shifting an image by 32 pixels in horizontal
and vertical directions resulted in a mean Hamming distance of
roughly 11%. Larger image translations even further raised the
Hamming distance. Image rotations also significantly increased
the Hamming distances with rotations of only one degree already
changingmore than 5% of the hash bits, and rotating it by 32 degrees
flipped even more than 30% of the bits. Similar non-robust behavior
could be observed for center cropping and downsizing, where larger
cropping windows and smaller image sizes increased the Hamming
distance almost linearly. Furthermore, flipping the images, one of
the simplest transformations without any loss of information and
easy to revert, changed 29% of the bits for horizontally flipping and
even 37% for vertical flipping.

While manipulating the hue of the images flipped 10% to 15%
percent of the bits, varying the saturation had only minor influence
and led to a hamming distance between 1% and 2%. Doubling the
contrast and the brightness flipped roughly 37% and 22% of the
hash bits. However, decreasing the values had almost no effect.

Investigating the effects of compression is especially interesting
since most online services and messaging apps compress images
during transmission. As can be seen in Figure 6f, compression
had only a slight impact on the hashes when choosing moderate
compression values. Compressing the images with a compression
value of 92, which still resulted in reasonable compression and
image quality, changed only roughly 2% of the bits.

In summary, our analysis demonstrated that NeuralHash is not
robust against many basic image transformations. While the system
showed stronger robustness against HSV space modifications and
image compression, it is more susceptible to other transformations,
such as rotations or flipping.

The most significant hash changes occurred when image in-
formation was lost or added, e.g., by cutting parts out or adding
black borders. We assume that the embedding network has been
trained in a contrastive learning setting, mainly based on color
transformations and, therefore, shows larger robustness against
these manipulations. However, an adversary could evade detection
with small effort and little to low quality loss in the images. In
reality, the reliability of such a system is therefore questionable.

6 ADVERSARY 4 – HASH INFORMATION
EXTRACTION

In our last adversarial setting, we want to investigate whether a
hash value leaks information about its corresponding image. Since
the embedding network is trained with contrastive learning, we ex-
pect that the extracted feature vector contains specific information

about the image. Considering these features are to some degree
included in the hash value, we assume that the hash value leaks at
least approximate information on an image’s content. Should this
assumption turn out to be true, then NeuralHash and presumably
also other perceptual hash-based systems would not completely
anonymize user data and still leak details about the contents on
user devices. This might not be critical for a single hash value due
to prediction uncertainty, but in the case of larger hash sets from
the same user, an adversary might expose the general content of
the images.

Technical Realization. To verify our assumption, we took a classi-
fication task dataset and trained a classifier to infer an image’s class
label given only its hash. For this, we first computed the hashes of
all samples in the dataset and trained a simple classifier that takes
a 96-bit vector as input. The adversary only needs black-box access
to the perceptual hashing function for this kind of attack.

Experimental Setup. We trained fully-connected neural networks
with three hidden layers on hashes of the ImageNet train split
with 1,000 classes and standard cross-entropy loss. To create a
balanced dataset, we randomly picked 732 samples from each class
resulting in a total of 732,000 training samples. We first computed
the binary hashes for the samples using NeuralHash and used 90%
of the hashes from each class for training and the remaining hashes
for hyperparameter optimization. Since many of the ImageNet
classes are quite similar, e.g., different dog breeds, we also used
85 coarse ImageNet categories [16] for training. We balanced the
categories by randomly picking 980 samples from each category,
resulting in 83,300 training samples, and again used 10% of it for
hyperparameter optimization. In the following, we will refer to this
task as categorization.

We evaluated the networks on the official ImageNet validation
split containing 50,000 samples. For evaluating the categorization
model, we randomly sampled 50 samples from each category from
the validation split. As evaluation metrics, we computed the top-1,
top-5, and top-10 prediction accuracy’s mean and standard devia-
tion on ten different training runs and dataset splits.

Results. We state our evaluation results in Table 3a. The results
confirm our assumption that hash values indeed leak information
about the corresponding images’ contents. Our classifier trained
on 1,000 classes achieved a top-1 test accuracy of 4.34%. Note that
ImageNet is a quite challenging dataset and random guessing only
achieves an expected accuracy of 0.1%. For the top-5 accuracy, the
neural network reached an accuracy as high as 12.03%, and even
17.75% for the top-10 accuracy. The categorization model trained
on the more coarse 85 categories predicted the correct category in
8.76% of the cases. Note that in this case prediction through random
guessing would be 1.18%. For the top-5 and top-10 accuracy, the
model even achieved 25.85% and 38.59% correct predictions. The
standard deviation is quite low, so random selection of training and
evaluation samples has only minor effects on the performance of
the models. For further analysis, we calculated the share of correct
predictions for each class and category for a randomly selected
model and present the three classes and categories that have been
predicted with the highest precision in Table 3b.
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Figure 6: Robustness results (mean + std) for image transformations computed on all ImageNet training samples (Adversary
3). The mean Hamming distance could also be interpreted as the share of hash bits expected to change.
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Figure 7: Mean Hamming distance for all ImageNet training
images translated horizontally and vertically (Adversary 3).
Yellow dots represent the distances for varying translations
in both directions.

In conclusion, our simple ImageNet classifiers have shown that
hashes still contain information about the images’ contents. And
even though the hashes contain less information than the corre-
sponding images, they should be handled with care in practical
applications. An attacker with access to a user’s image hashes
might infer private information about contents on the device.

7 LESSONS & IMPLICATIONS
Current systems are not robust. Our experimental results illus-
trate that perceptual hashing systems like NeuralHash are in no
way robust against gradient-free detection evasion attacks. Sim-
ple image modifications, such as flipping an image horizontally,
already allow an attacker to evade detection in most cases, even

Classification Categorization
Top-1 04.34% ± 0.046% 08.76% ± 0.237%
Top-5 12.03% ± 0.090% 25.85% ± 0.423%
Top-10 17.75% ± 0.182% 38.59% ± 0.728%

(a) Test accuracy (mean + std).
Classification Categorization

Class Pre. Category Pre.
Website 52.0% Mosquito Net 52.0%
Panda 36.0% Sloth 30.0%
Leonberg (dog breed) 36.0% Hay 30.0%

(b) Share of correctly classified hashes.
Table 3: Evaluation results for our hash information extrac-
tion attack. Table 3a shows the mean accuracy measured on
ten runs for the classification and categorization task. Ran-
dom guessing has an expected top-1 accuracy of 0.1% and
1.2%, respectively. Table 3b shows the classes and categories,
respectively, on which the hashes were classified correctly
in the majority of the cases.

without direct access to the system. The attacker does not need any
technical knowledge and can manipulate the images with standard
image editors to evade detection. Even though we focused in our
experiments on NeuralHash, we are convinced that other systems
are also vulnerable to this kind of attack since deep neural net-
works react sensitively to input changes, as also adversarial attacks
illustrate. As we outline later, the networks might be trained to be
more robust against simple image manipulations but will never be
entirely secure. A more robust system will force the attacker to
alter the images stronger, but the content of the images will most
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likely still be visible and recognizable. For example, disassembling
an image into smaller parts for storing and reassembling the image
only for viewing would lead to completely different hashes for each
part without any loss of information in the full image.

On the other hand, evasion attacks exploiting gradient infor-
mation allow evasion with only minor image manipulations. Our
experiments have shown that with a bit of technical knowledge,
an attacker can modify the images to evade detection without the
modifications being clearly visible. Such attacks will most likely be
possible in any neural network-based CSS system if the attacker
has access to the model on the user device and is, therefore, able to
calculate the gradients of the model.

Client-side scanning systems can be misused for malicious
purposes. Proponents of client-side scanning emphasize the fact
that the systems enable the detection of CSAM and other criminal
material while avoiding backdoor keys in the end-to-end encryption
and maintaining the user’s privacy. However, client-side scanning
opens the door for other malicious attacks. While evasion of the
detection system only renders the system useless, an attacker can
further misuse the system for framing or monitoring innocent users
using hash collision attacks. As we have demonstrated, an attacker
can slightly alter images to change their hashes to a specific value,
causing false-positive detections for arbitrary image contents. With
access to an official hash database or a surrogate, an attacker can
frame innocent people by sending these manipulated images to
their devices. As a result, without even knowing, the receivers of
such images get flagged by the system.

As legislators call for preventing the distribution of harmful
material while maintaining encryption gets louder, client-side
scanning systems using perceptual hashing look very promising at
first glance. However, governments or organizations with control
over the client-side scanning system could share manipulated
images in social media, and users that downloaded a subset of these
images get flagged. Mass surveillance of people with undesired
beliefs and opinions is therefore simply and secretly realizable.
Additional tools or backdoors in the user devices are not needed.
Also, there is no guarantee that the hash database will not be
extended with additional, non-criminal content for surveillance.
Since the databases are not publicly available, changes are not
traceable, and the targeted content might be anything – who
controls the provider of such a system?

Hash values still contain information. Even though the hash
values of images contain much less information than the images
themselves, our experiments have shown that there is still some
information encoded in these hash values. Using the hash values,
inference about the general content of images on the device
is possible. Although image information is highly compressed,
sharing these hashes with the system’s provider might harm a
user’s privacy. Moreover, hashes with a larger number of bits
are expected to leak even more information due to an increased
information capacity. Apparently, Microsoft’s PhotoDNA, which
is already widely used for CSAM detection, produces hashes
with 144-byte values [33]. We expect these hashes to leak even
more information than NeuralHash, whose hashes consist of 96 bits.

Mitigating the risks. Regarding the technical aspects of the sys-
tem, one way to mitigate the effectiveness of collision attacks
against hashing-based detection systems is to install another server-
side hashing procedure not available to the attacker. But this would,
in turn, imply that the images are not encrypted on the server or
could be decrypted by the provider, questioning the promised pri-
vacy advantages. Another method would be to restrict the model
access and prevent gradient computations, which would indeed
make gradient-based attacks hardly feasible. However, these steps
do not improve the robustness against standard image transfor-
mations. Client-side scanning methods based on neural networks
will most likely enable gradient computation or approximation and,
consequently, facilitate arbitrary hash manipulations. Hence, even
an updated version of NeuralHash’s embedding network would
very likely suffer from the demonstrated vulnerabilities.

To complicate hash manipulations, we expect training the
embedding network in an adversarial setting [22, 46] might
improve its robustness against attacks that manipulate the images.
In adversarial training, a sample is first manipulated by one of our
gradient-based attacks or standard image transformations and then
used as a regular training sample to update the model’s weights. It
is further important to restrict public access to the hash database.
If the plain hashes are leaked, it is even easier for an adversary to
produce a large number of false-positive matches. On the other
hand, an independent instance should monitor the database to
avoid manipulations and the introduction of non-criminal material.

In summary, our work points out that NeuralHash, and arguably
deep perceptual hashing algorithms in general, are not robust and
susceptible against gradient-based and gradient-free image ma-
nipulations. It is questionable if neural networks in their current
form will ever be fully robust. We further share the viewpoint that
client-side scanning might have initially reasonable goals but also
acknowledge the potential risks of expanding the scope of applica-
tion since it is running on all devices regardless of whether crime is
suspected or not. We hope that service providers and governments
are not going in this direction in crime detection due to the many
technical and societal risks.

From a technical and ethical viewpoint, we conclude that Neural-
Hash and related client-side scanning systems do not provide a safe
method for detecting legal violations and should not be deployed
on user devices since attackers, service providers, and governments
could simply manipulate and misuse the systems according to their
interests. After all, mobile devices contain a lot of sensitive infor-
mation about their users, ranging from dating behavior to health
care and financial status. Instead, based on our results, we call for
NeuralHash and other client-side scanning systems not to be in-
stalled in practice, due to their manipulability, risk of abuse, and
lack of robustness. Granting access to the content stored on the
devices, even only the images, might pave the way for further inter-
ventions in a user’s privacy. We should, therefore, be very careful
in deploying detection systems directly on user devices.
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8 CONCLUSION
Using NeuralHash as a practical example from a real-world use case,
our work demonstrated that perceptual hashing-based detection
systems might be cryptographically well-proven but are still highly
susceptible to various attacks, some of them trivial, that crack the
system. We empirically showed that the system is vulnerable to
collision attacks that might lead to serious consequences for pri-
vacy and allow monitoring of users beyond the intended use case
of CSAM detection. Our results further suggest that the feature
extraction step in the hash computation is in no way robust against
gradient- and transformation-based image manipulations and in-
duces vulnerabilities that allow an attacker to easily evade detection.
Moreover, even though NeuralHash produces only short bit-string
hashes, we practically demonstrated that the hashes still leak some
information on the images’ contents and should be treated with
caution. We conclude that NeuralHash, and deep perceptual hash-
ing systems in general, pose several risks to the reliability of the
systems and even to human society. Therefore, we believe that
NeuralHash, and other client-side detection systems, should not be
installed in their current state.

Disclaimer. The views and opinions expressed in this article are
those of the authors and do not reflect the official policy or position
of the authors’ institutions or any agency of the German Federal
Government.

Reproducibility StatementWe deliberately decided to make
our source code publicly available to reproduce the experi-
ments and investigate existing and future perceptual hashing
systems: https://github.com/ml-research/Learning-to-Break-Deep-
Perceptual-Hashing.

ACKNOWLEDGMENTS
This work was supported by the German Ministry of Education
and Research (BMBF) within the framework program “Research for
Civil Security” of the German Federal Government, project KISTRA
(reference no. 13N15343). It also benefited from the National Re-
search Center for Applied Cybersecurity ATHENE, a joint effort
of BMBF and the Hessian Ministry of Higher Education, Research,
Science and the Arts (HMWK). We thank the anonymous reviewers
for their insightful and constructive comments on this paper. Also,
we thank Elissa Redmiles for her valuable feedback.

REFERENCES
[1] Hal Abelson, Ross Anderson, Steven M. Bellovin, Josh Benaloh, Matt Blaze, Jon

Callas, Whitfield Diffie, Susan Landau, Peter G. Neumann, Ronald L. Rivest,
Jeffrey I. Schiller, Bruce Schneier, Vanessa Teague, and Carmela Troncoso. 2021.
Bugs in our Pockets: The Risks of Client-Side Scanning. CoRR abs/2110.07450
(2021).

[2] Mathias Appel. 2017. PIXNIO-226632-4681x3100.jpeg. https://pixnio.com/
creative-commons-license, accessed Sept. 23, 2021; Cropped; License: https://
pixnio.com/creative-commons-license.

[3] Anish Athalye. 2021. NeuralHash Collider. https://github.com/anishathalye/
neural-hash-collider, accessed Oct. 12, 2021.

[4] Jiawang Bai, Bin Chen, Yiming Li, Dongxian Wu, Weiwei Guo, Shu-tao Xia, and
En-hui Yang. 2020. Targeted Attack for Deep Hashing based Retrieval. In ECCV.

[5] Mihir Bellare. 2021. The Apple PSI Protocol. https://www.apple.com/child-safety/
pdf/Technical_Assessment_of_CSAM_Detection_Mihir_Bellare.pdf, accessed:
Oct. 1, 2021.

[6] Patrick Breyer, Alviina Alametsä, Rosa D’Amato, Pernando Barrena, Saskia Bric-
mont, Antoni Comín, Gwendoline Delbos-Corfield, Francesca Donato, Cornelia
Ernst, Claudia Gamon, Markéta Gregorová, Francisco Guerreiro, Svenja Hahn,
Irena Joveva, Petra Kammerevert, Marcel Kolaja, Moritz Körner, Karen Melchior,
Clara Ponsatí, and Mikuláš Peksa. 2021. Cross-Party Letter of Member of the

European Parliament Against General Monitoring. https://www.patrick-breyer.
de/wp-content/uploads/2021/11/20211020_Letter_General_Monitoring.pdf, ac-
cessed: Nov. 19, 2021.

[7] John F. Canny. 1986. A Computational Approach to Edge Detection. IEEE TPAMI
8, 6 (1986), 679–698.

[8] Nicholas Carlini and David A. Wagner. 2017. Towards Evaluating the Robustness
of Neural Networks. In 2017 IEEE Symposium on Security and Privacy, SP 2017,
San Jose, CA, USA, May 22-26, 2017. IEEE Computer Society, 39–57. https:
//doi.org/10.1109/SP.2017.49

[9] European Commission. 2020. EU strategy for a more effective fight against child
sexual abuse. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:
52020DC0607, accessed: Nov. 16, 2021.

[10] Francesco Croce and Matthias Hein. 2020. Minimally distorted Adversarial
Examples with a Fast Adaptive Boundary Attack. In Proceedings of the 37th
International Conference on Machine Learning (ICML) (Proceedings of Machine
Learning Research, Vol. 119). 2196–2205.

[11] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In CVPR. 248–255.

[12] Brian Dolhansky and Cristian Canton-Ferrer. 2020. Adversarial collision attacks
on image hashing functions. CoRR abs/2011.09473 (2020).

[13] Xiaoyi Dong, DongdongChen, Jianmin Bao, ChuanQin, Lu Yuan,Weiming Zhang,
Nenghai Yu, and Dong Chen. 2020. GreedyFool: Distortion-Aware Sparse Adver-
sarial Attack. In Conference on Neural Information Processing Systems (NeurIPS),
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin (Eds.).

[14] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and
Jianguo Li. 2018. Boosting Adversarial Attacks With Momentum. In 2018 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 9185–9193.

[15] Andrea Drmic, Marin Silic, Goran Delac, Klemo Vladimir, and Adrian S. Kurdija.
2017. Evaluating robustness of perceptual image hashing algorithms. In 2017
40th International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO). 995–1000. https://doi.org/10.23919/
MIPRO.2017.7973569

[16] Noam Eshed. 2020. Novelty detection and analysis in convolutional neural networks.
Master’s thesis. Cornell University.

[17] Facebook. 2019. Open-Sourcing Photo- and Video-Matching Technology to Make
the Internet Safer. https://about.fb.com/news/2019/08/open-source-photo-video-
matching, accessed Oct. 18, 2021.

[18] Department for Digital, Culture, Media & Sport, United Kingdom Government.
2021. Draft Online Safety Bill. https://assets.publishing.service.gov.uk/
government/uploads/system/uploads/attachment_data/file/985033/Draft_
Online_Safety_Bill_Bookmarked.pdf, accessed: Nov. 16, 2021.

[19] National Center for Missing & Exploited Children. 2021. CyberTipline - By the
Numbers. https://www.missingkids.org/gethelpnow/cybertipline, accessed: Oct.
1, 2021.

[20] David Forsyth. 2021. Apple’s CSAM detection technology. https:
//www.apple.com/child-safety/pdf/Technical_Assessment_of_CSAM_
Detection_David_Forsyth.pdf, accessed: Oct. 1, 2021.

[21] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in
High Dimensions via Hashing. In VLDB. 518–529.

[22] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
Harnessing Adversarial Examples. In ICLR.

[23] R. Hadsell, S. Chopra, and Y. LeCun. 2006. Dimensionality Reduction by Learning
an Invariant Mapping. In CVPR, Vol. 2. 1735–1742.

[24] Qingying Hao, Licheng Luo, Steve TK Jan, and GangWang. 2021. It’s Not What It
Looks Like: Manipulating Perceptual Hashing based Applications. In Proceedings
of The ACM Conference on Computer and Communications Security (CCS).

[25] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-
ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le,
and Hartwig Adam. 2019. Searching for MobileNetV3. In ICCV.

[26] Apple Inc. 2021. CSAM Detection - Technical Summary. https://www.apple.
com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf, accessed: Sept.
22, 2021.

[27] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality. In ACM - STOC. 604–613.

[28] Shubham Jain, Ana-Maria Cretu, and Yves-Alexandre de Montjoye. 2021. Ad-
versarial Detection Avoidance Attacks: Evaluating the robustness of perceptual
hashing-based client-side scanning. CoRR abs/2106.09820 (2021).

[29] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Li Fei-Fei. 2011.
Novel Dataset for Fine-Grained Image Categorization. In First Workshop on Fine-
Grained Visual Categorization, CVPR.

[30] Lim Swee Kiat. 2021. apple-neuralhash-attack. https://github.com/greentfrapp/
apple-neuralhash-attack, accessed Oct. 12, 2021.

[31] Yannic Kilcher. 2021. Neural Hash Collision Creator. https://github.com/yk/
neural_hash_collision, accessed Oct. 12, 2021.

[32] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR.

https://github.com/ml-research/Learning-to-Break-Deep-Perceptual-Hashing
https://github.com/ml-research/Learning-to-Break-Deep-Perceptual-Hashing
https://pixnio.com/creative-commons-license
https://pixnio.com/creative-commons-license
https://pixnio.com/creative-commons-license
https://pixnio.com/creative-commons-license
https://github.com/anishathalye/neural-hash-collider
https://github.com/anishathalye/neural-hash-collider
https://www.apple.com/child-safety/pdf/Technical_Assessment_of_CSAM_Detection_Mihir_Bellare.pdf
https://www.apple.com/child-safety/pdf/Technical_Assessment_of_CSAM_Detection_Mihir_Bellare.pdf
https://www.patrick-breyer.de/wp-content/uploads/2021/11/20211020_Letter_General_Monitoring.pdf
https://www.patrick-breyer.de/wp-content/uploads/2021/11/20211020_Letter_General_Monitoring.pdf
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0607 
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0607 
https://doi.org/10.23919/MIPRO.2017.7973569
https://doi.org/10.23919/MIPRO.2017.7973569
https://about.fb.com/news/2019/08/open-source-photo-video-matching
https://about.fb.com/news/2019/08/open-source-photo-video-matching
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/985033/Draft_Online_Safety_Bill_Bookmarked.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/985033/Draft_Online_Safety_Bill_Bookmarked.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/985033/Draft_Online_Safety_Bill_Bookmarked.pdf
https://www.missingkids.org/gethelpnow/cybertipline
https://www.apple.com/child-safety/pdf/Technical_Assessment_of_CSAM_Detection_David_Forsyth.pdf
https://www.apple.com/child-safety/pdf/Technical_Assessment_of_CSAM_Detection_David_Forsyth.pdf
https://www.apple.com/child-safety/pdf/Technical_Assessment_of_CSAM_Detection_David_Forsyth.pdf
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf
https://github.com/greentfrapp/apple-neuralhash-attack
https://github.com/greentfrapp/apple-neuralhash-attack
https://github.com/yk/neural_hash_collision
https://github.com/yk/neural_hash_collision


FAccT ’22, June 21–24, 2022, Seoul, Republic of Korea Struppek, Hintersdorf, Neider, Kersting

[33] Neal Krawetz. 2021. PhotoDNA and Limitations. https://hackerfactor.com/
blog/index.php?/archives/931-PhotoDNA-and-Limitations.html, accessed: Jan.
13, 2022.

[34] Sarah Jamie Lewis. 2021. Tweets on NeuralHash. https://twitter.com/
SarahJamieLewis/status/1428146453394821125, accessed: Oct. 1, 2021.

[35] Venice Erin Liong, Jiwen Lu, Gang Wang, Pierre Moulin, and Jie Zhou. 2015.
Deep hashing for compact binary codes learning. In CVPR. 2475–2483.

[36] Haomiao Liu, Ruiping Wang, Shiguang Shan, and Xilin Chen. 2016. Deep Super-
vised Hashing for Fast Image Retrieval. In CVPR. 2064–2072.

[37] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2018. Towards Deep Learning Models Resistant to Adversarial
Attacks. In ICLR.

[38] Microsoft. 2015. PhotoDNA. https://www.microsoft.com/en-us/photodna,
accessed Oct. 18, 2021.

[39] Official Journal of the European Union. 2021. Regulation (EU) 2021/1232. https:
//eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32021R1232, accessed:
Nov. 16, 2021.

[40] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay
Celik, and Ananthram Swami. 2016. The Limitations of Deep Learning in Adver-
sarial Settings. In IEEE European Symposium on Security and Privacy (EuroS&P).
372–387.

[41] Benny Pinkas. 2021. A Review of the Cryptography Behind the Apple PSI
System. https://www.apple.com/child-safety/pdf/Technical_Assessment_of_
CSAM_Detection_Benny_Pinkas.pdf, accessed: Oct. 1, 2021.

[42] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,
ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
IJCV 115, 3 (2015), 211–252.

[43] Edward Snowden. 2021. The All-Seeing "i": Apple Just Declared War on Your
Privacy. https://edwardsnowden.substack.com/p/all-seeing-i, accessed: Oct. 1,
2021.

[44] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. 2019. One Pixel
Attack for Fooling Deep Neural Networks. IEEE TEVC 23, 5 (2019), 828–841.

[45] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2014. Intriguing properties of neural networks.

In ICLR.
[46] Xunguang Wang, Zheng Zhang, Guangming Lu, and Yong Xu. 2021. Targeted

Attack and Defense for Deep Hashing. In ACM SIGIR. 2298–2302.
[47] Xunguang Wang, Zheng Zhang, Baoyuan Wu, Fumin Shen, and Guangming Lu.

2021. Prototype-Supervised Adversarial Network for Targeted Attack of Deep
Hashing. In CVPR. 16357–16366.

[48] YongweiWang, Hamid Palangi, Z. JaneWang, and HaoqianWang. 2018. RevHash-
Net: Perceptually de-hashing real-valued image hashes for similarity retrieval.
Signal Processing: Image Communication 68 (2018), 68–75. https://doi.org/10.
1016/j.image.2018.06.018

[49] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. 2004. Image
quality assessment: from error visibility to structural similarity. IEEE Transactions
on Image Processing 13, 4 (2004), 600–612.

[50] Katie Crampton (WMUK). 2020. Black Lives Matter protest at US Em-
bassy. https://commons.wikimedia.org/wiki/File:Black_Lives_Matter_protest_
at_US_Embassy,_London_01.jpg, accessed Sept. 23, 2021; Cropped; License:
https://creativecommons.org/licenses/by-sa/4.0/deed.en.

[51] Dayan Wu, Zheng Lin, Bo Li, Mingzhen Ye, and Weiping Wang. 2017. Deep
Supervised Hashing for Multi-Label and Large-Scale Image Retrieval. In ACM
ICMR. 150–158.

[52] Yanru Xiao and Cong Wang. 2021. You See What I Want You To See: Explor-
ing Targeted Black-Box Transferability Attack for Hash-Based Image Retrieval
Systems. In CVPR. 1934–1943.

[53] Erkun Yang, Tongliang Liu, Cheng Deng, and Dacheng Tao. 2020. Adversarial
Examples for Hamming Space Search. IEEE Transactions on Cybernetics 50, 4
(2020), 1473–1484.

[54] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang.
2018. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 586–595.

[55] F. Zhao, Yongzhen Huang, Liang Wang, and Tieniu Tan. 2015. Deep semantic
ranking based hashing for multi-label image retrieval. In CVPR. 1556–1564.

[56] Mingkang Zhu, Tianlong Chen, and Zhangyang Wang. 2021. Sparse and Imper-
ceptible Adversarial Attack via a Homotopy Algorithm. In Proceedings of the 38th
International Conference on Machine Learning (ICML), Marina Meila and Tong
Zhang (Eds.), Vol. 139. 12868–12877.

https://hackerfactor.com/blog/index.php?/archives/931-PhotoDNA-and-Limitations.html
https://hackerfactor.com/blog/index.php?/archives/931-PhotoDNA-and-Limitations.html
https://twitter.com/SarahJamieLewis/status/1428146453394821125
https://twitter.com/SarahJamieLewis/status/1428146453394821125
https://www.microsoft.com/en-us/photodna
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32021R1232 
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32021R1232 
https://www.apple.com/child-safety/pdf/Technical_Assessment_of_CSAM_Detection_Benny_Pinkas.pdf
https://www.apple.com/child-safety/pdf/Technical_Assessment_of_CSAM_Detection_Benny_Pinkas.pdf
https://edwardsnowden.substack.com/p/all-seeing-i
https://doi.org/10.1016/j.image.2018.06.018
https://doi.org/10.1016/j.image.2018.06.018
https://commons.wikimedia.org/wiki/File:Black_Lives_Matter_protest_at_US_Embassy,_London_01.jpg
https://commons.wikimedia.org/wiki/File:Black_Lives_Matter_protest_at_US_Embassy,_London_01.jpg
https://creativecommons.org/licenses/by-sa/4.0/deed.en

	Abstract
	1 Introduction
	2 Background
	2.1 Perceptual Hashing and NeuralHash
	2.2 Attacks Against Neural Networks

	3 Adversary 1 – Hash Collision Attacks
	4 Adversary 2 – Gradient-Based Evasion Attacks
	5 Adversary 3 – Gradient-Free Evasion Attacks
	6 Adversary 4 – Hash Information Extraction
	7 Lessons & Implications
	8 Conclusion
	Acknowledgments
	References

