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Abstract

Groups of entities are naturally represented as
sets, but generative models usually treat them
as independent from each other or as sequences.
This either over-simplifies the problem, or im-
poses an order to the otherwise unordered col-
lections, which has to be accounted for in loss
computation. We therefore introduce generative
adversarial set transformer (GAST)—a GAN for
sets capable of generating variable-sized sets in a
permutation-equivariant manner, while account-
ing for dependencies between set elements. It
avoids the problem of formulating a distance met-
ric between sets by using a permutation-invariant
discriminator. When evaluated on a dataset of reg-
ular polygons and on MNIST point clouds, GAST
outperforms graph-convolution-based GANs in
sample fidelity, while showing good generaliza-
tion to novel set sizes.

1. Introduction
Many important problems in machine learning involve
datasets which cannot easily be represented using fixed-
length vectors, but rather consist of variable-sized collec-
tions of potentially unordered items. For instance, in object
detection, the set of objects present in a visual scene can
vary in size and has no natural ordering. With the advent
of attention-based architectures and transformers (Vaswani
et al., 2017), there is now a widely used architecture ca-
pable of handling this type of data, but which has been
applied predominantly to sequences (Devlin et al., 2019).
When it was used on sets, it was typically in the context
of supervised, discriminative problems with sets as inputs
(Zaheer et al., 2017; Lee et al., 2019), or outputs (Carion
et al., 2020). Unsupervised generative modelling of sets,
however, has received considerably less attention. Perhaps
as a consequence, many current generative models reason-
ing about objects are sidestepping this issue by assuming
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independence between objects, introducing expensive re-
current dependencies between them, or relying on iterative
refinement methods (Eslami et al., 2016; Greff et al., 2019;
Engelcke et al., 2020; Nguyen-Phuoc et al., 2020).

Adapting standard generative architectures to sets brings
about two key challenges. First, the represented distribution
should be order-invariant, i. e., all permutations of a gener-
ated sample should be equiprobable. It has been shown that
naı̈vely applying non-order-invariant architectures, such as
multilayer perceptrons (MLPs), to sets results in degraded
performance due to symmetries of the loss landscape (Za-
heer et al., 2017; Zhang et al., 2020). Second, many gener-
ative models require computing the likelihood of the input
during training, which, for sets, often amounts to comparing
the input set with a generated one. This requires considering
all possible permutations of the two sets, giving rise to a
bipartite graph matching problem. Existing works in this
direction have either solved it using the cubic-time Hungar-
ian algorithm, or approximated it via e. g. the Chamfer loss
(Zhang et al., 2019b), which can introduce perilous local
optima, especially for sets of different sizes. Both aspects
show that generating sets remains technically challenging.

In this paper, we propose a new architecture for set gener-
ation, the generative adversarial set transformer (GAST).
It addresses the two problems described above by employ-
ing set transformers (Lee et al., 2019) to generate sets in
an equivariant manner, and by formulating an adversarial
objective with an order-invariant discriminator, making an
explicit distance metric between sets unnecessary. Previ-
ous work on adversarial set generation (Achlioptas et al.,
2018; Valsesia et al., 2019; Shu et al., 2019; Li et al., 2018)
has focused on the generation of 3D point clouds, with the
assumption that input sets are all of equal size, and that
their elements are independently and identically distributed
(IID). These assumptions are ill-suited for reasoning about
objects: scenes can contain different numbers of objects,
and there may be complicated dependencies between ob-
jects, which we would like to model. GAST avoids these
restrictions and allows the generation of variable-sized sets,
taking into account dependencies between elements. GAST
also differs from prior art in that it uses self-attention in-
stead of graph-convolutional network (GCN) variants (Kipf
& Welling, 2017), resulting in a fully differentiable architec-
ture that is not restricted to a particular graph structure.



Generative Adversarial Set Transformers

3 

MLP

Set 
Transformer

Set 
Transformer MLP

z

n 

Initial Set

Input Data

Real / Fake

Sample

Generator Discriminator

Figure 1. Overview of the generative adversarial set transformer (GAST).

2. Further Related Work
GANs are widely used as generative models for im-
ages (Goodfellow et al., 2014). While some apply self-
attention to facilitate long-distance interactions between
pixels (Zhang et al., 2019a; Brock et al., 2019), few adver-
sarial models have been proposed for the set domain. We
are aware of four exceptions, all of which focus on the gen-
eration of IID point clouds—sets of points independently
sampled from the surface of 3D shapes, such as meshes
from the ShapeNet dataset (Chang et al., 2015).

The r-GAN (Achlioptas et al., 2018) uses an order-invariant
discriminator, but employs a standard MLP as its generator.
The following models improved on this by implementing or-
der equivariant generators. Valsesia et al. (2019) use a GCN,
whereby the graph structure is dynamically generated using
the k-nearest neighbor heuristic. Shu et al. (2019) present
the less computationally-expensive TreeGAN, in which the
GCN operates on a tree structure obtained by repeatedly
upsampling points. Finally, Li et al. (2018) propose point-
cloud GANs (PCGANs), a hierarchical model which first
generates a latent shape-variable, and then samples points in-
dependently conditioned on that shape variable. This allows
sampling arbitrarily many points, at the price of neglecting
any interactions between individual points.

All of these models operate on input data where each set
has the same number of points, and where points are IID.
For PCGANs, the IID assumption is also encoded in the
architecture of the generator. The other models have, in
principle, the capability of generating non-IID data, but this
has not been confirmed empirically.

3. Background
GCNs and attention based-architectures such as transform-
ers share the goal of processing collections of entities by
aggregating pairwise interactions between them (Battaglia
et al., 2018). They exhibit important technical differences,
however: GCNs only allow interactions between nodes con-

nected via an edge, requiring the specification of a graph
structure. Attention-based architectures, on the other hand,
typically account for all pairwise interactions. In this paper,
we build on set transformers (Lee et al., 2019), a family of ar-
chitectures explicitly designed for modelling operations on
sets which are equivariant/invariant to the order of their ele-
ments. Their basic operation is the multi-head dot-product
attention block MAB(Q,K), which computes interactions
between a query set Q ∈ Rn×dk and a key set K ∈ Rm×dk ,
followed by aggregating the results for each query (Vaswani
et al., 2017). We use several modules constructed from this
building block, starting with the self-attention block (SAB).
SAB simply computes the multi-head attention of a set of
entities with itself, i. e., SAB(X) = MAB(X,X). Repeat-
edly applying this block lets us transform a simple initial
set into samples resembling the training data.

Self-attention on a set requires computing interactions be-
tween all pairs of entities — a computationally prohibitive
operation if the number of entities is large. We follow
Lee et al. (2019) and replace the SABs with induced
self-attention blocks (ISABs); here, interactions are fun-
nelled through a smaller set of anchor entities A, such
that ISAB(X) = MAB(X,MAB(A,X)). As a result, the
total number of interactions to compute is reduced from
|X|2 to 2|A||X|, while still allowing all X to interact with
each other. The anchor points A can be initialized to a
fixed value, learned during training, or conditioned on other
data. Finally, in order to map from sets to a fixed vec-
tor in the discriminator, we make use of induced set en-
coders (ISEs). They also use a set of anchor points A, but
summarize the results of the attention block via summing:
ISE(X) =

∑
iMAB(ai, X). ISEs represent a more ex-

pressive alternative to simpler set-pooling operations.

4. Generative Adversarial Set Transformers
We now present GAST in detail, following the illustration
given by Fig 1. Our goal is to represent distributions
over sets of variable size. We choose to view them fac-
torized as p(n)p(x | n), where n is the number of elements,
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Figure 2. Training data and samples obtained from GAST (top) and TreeGAN (bottom) for the polygon dataset (left) and MNIST (right).

and x := {xi}ni=1 is the set of elements, with elements
xi ∈ Rd. This allows us to start the generative process
by drawing a random initial set x0 of the desired size n
from some p

(
x0
∣∣ n). We can then parameterize p(x | n)

using a set-to-set function f , which transforms the initial
set according to some noise variables z ∼ p(z) such that
p(x | n) =

∫
δ(f(x0, z))p

(
x0
∣∣ n)p(z)dx0dz. Such func-

tions f can be readily formulated using the set-transformer
blocks outlined above. The benefit of this scheme is that
it does not require dynamically adding or removing ele-
ments over the course of the generation process, thereby
avoiding any discrete operations which would complicate
gradient-based training.

To represent variable-sized sets in the context of batched
computations, we operate on tensors of maximum set size
N ≥ n, typically the size of the largest set in the training
data. Specifically, a batch of b sets containing d-dimensional
elements is represented by a tensor of shape [b,N, d], com-
bined with a binary presence indicator matrix of shape
[b,N ]. Whenever interactions between entities are com-
puted by the set-transformer blocks, we take care to set the
interactions involving non-existing elements to zero. For
simplicity, we ignore this technical detail in the following
and instead only focus on individual sets.

The generative process begins by drawing the number of
points n from a categorical distribution whose parameters
are equal to the relative set-size frequencies in the training
set. We then draw a global noise vector z from N (0, I).
Both z and n are then processed by an MLP, allowing the
model to compute global features z′ of the set such as posi-
tion, orientation, and shape. Finally, we sample an initial set
x0 of size n. To do so, we first instantiate N Gaussian dis-
tributionsN

(
µi,σ

2
i

)
with learnable parameters µ,σ ∈ Rd.

We then choose n such Gaussians uniformly at random with-
out replacement, and sample one x0

i from each Gaussian.

To process this initial set, we use a set-transformer con-

ditioned on z′, implementing the function f(x0, z′) in-
troduced above. Specifically, we stack multiple self-
attention blocks (SAB), each featuring a residual connec-
tion (Fig. 3(a)). Conditioning on z′ is done by concatenat-
ing each element x0

i with z′ before applying self-attention.
When N is large enough so that the quadratic cost of SABs
is prohibitive, we instead use induced self-attention blocks
(ISABs). In this case, we predict the anchor points A from
the conditioning vector z′ using a small two-layer MLP. Fi-
nally, after kgen such layers, we use a linear mapping to
project each element in the set of the desired dimensionality.
The discriminator is structured very similarly. It begins with
an element-wise linear mapping of the inputs to a higher
dimensionality. Again, the resulting set is then processed us-
ing a sequence of kdisc (induced) self-attention blocks with
residual connections, this time without external conditioning
(Fig. 3b). Each intermediate result, as well as the final set, is
also processed using an induced set encoder (ISE), yielding
an encoding vector ei. At the end, the vectors e0, . . . , ekdisc

are concatenated and fed into an MLP to obtain the final
score.

To train the model, we follow the techniques employed by
self-attention GANs (Zhang et al., 2019a). We minimize the
adversarial hinge loss using the Adam optimizer (Kingma
& Ba, 2015) with a learning rate of 10−4 for the generator
and 4 · 10−4 for the discriminator. To avoid mode collapse,
we apply spectral normalization (Miyato et al., 2018) to all
linear layers, including the ones within the attention blocks.

5. Experiments
To evaluate our model’s ability to model non-IID sets of
variable size, we considered two datasets. First, we built a
toy dataset in which the sets contain the vertices of regular
polygons, represented via 2D Cartesian coordinates. We
varied the number of vertices between 3 and 10, and ran-
domized the polygons’ position, rotation, and scale. As a
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Figure 3. Layers used within our set transformers.

second dataset, we followed Zaheer et al. (2017) and gener-
ated a version of MNIST in which the digits are represented
by sets of non-zero pixels, again represented by their 2D
coordinates. Here, the set size ranges from 32 to 342. For
both datasets, we used kgen = 4 layers for the generator and
kdisc = 2 layers for the discriminator, and four heads for
each attention block. Within the set transformers, we rep-
resented points as 64-dimensional vectors. For the MNIST
dataset, we utilized induced attention blocks to reduce the
computational load, using |A| = 24 anchor points per block.

As a baseline, we examined TreeGANs (Shu et al., 2019).
Since that model is designed for point clouds of constant
size, we created variants of our datasets, which fit this set-
ting. To do so, we sampled N ′ points with replacement
from each set in the training data, and then added Gaussian
noise with a small standard deviation (0.02) to the resulting
points. To provide for good coverage of the original set, we
choosed N ′ somewhat higher than N , namely N ′ = 64 for
the polygons and N ′ = 384 for MNIST. We adjusted the
TreeGAN’s branching factors to facilitate these set sizes,
but otherwise left the architecture and hyperparameters as
recommended by the authors.

5.1. Sample Quality

Fig. 2 depicts samples from the training sets, and samples
from the corresponding models. We find that GAST learns
to generate almost perfectly arranged polygons, whereas
TreeGAN struggles to allocate its samples in a regular man-
ner. It also almost exclusively generates between 4 and 6
recognizable clusters. We suspect that this is a result of the
fact that its points tend to cluster by subtree, and the rigid
tree structure makes it difficult to dynamically change the
number of clusters. GAST, in contrast, generates convincing
samples for all set sizes. On MNIST, the visual fidelity of
both models is closer, but there are still interesting qualita-
tive differences. For GAST, the distribution of points is more
even,likely a result of the fact that the training data was
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Figure 4. Samples from GAST for different set sizes. All other ran-
dom variables are left constant across each row, but differ between
the rows. The last two columns show set sizes not present in the
training dataset.

obtained in a structured way instead of being sampled IID.

5.2. Generalization and Disentanglement

In order to investigate the influence that different set sizes
have on our model, we generated samples by varying n
while leaving all other random variables constant. We also
tried values for n, which were not present in the training
dataset. For the polygon dataset, we find that the model
generalizes to higher numbers of points quite well, as the
sets still resemble regular polygons. However, the variation
between sets decreases as n approaches N , likely a result of
the fact that the sampling from the initial set exhibits lower
variance as n increases.

The size of the polygons appears to be mostly disentangled
from the number of points, whereas positions are influenced
by n. For MNIST, we find that the shape of the generated
digit often changes with n, reflecting the fact that the av-
erage number of white pixels differs greatly between digit
classes. While this lack of disentanglement might be unde-
sirable in some cases, if the goal is to fit the distribution of
the training data as faithfully as possible, then this behavior
is correct.

6. Conclusion
We have presented generative adversarial set transformer
(GAST) — a generative model for variable-sized collections
of unordered non-IID elements. We found that it yields
higher-quality samples compared to previous approaches,
while also showing good generalization to novel set sizes.
We hope that it will help future generative models to ac-
curately and efficiently model dependencies between set
elements, with object-aware scene modelling as one of the
most promising applications.
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