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Abstract

The AlphaZero algorithm has been successfully applied in a
range of discrete domains, most notably board games. It uti-
lizes a neural network that learns a value and policy func-
tion to guide the exploration in a Monte-Carlo Tree Search.
Although many search improvements such as graph search
have been proposed for Monte-Carlo Tree Search in the past,
most of them refer to an older variant of the Upper Confi-
dence bounds for Trees algorithm that does not use a pol-
icy for planning. We improve the search algorithm for Alp-
haZero by generalizing the search tree to a directed acyclic
graph. This enables information flow across different sub-
trees and greatly reduces memory consumption. Along with
Monte-Carlo Graph Search, we propose a number of further
extensions, such as the inclusion of ε-greedy exploration, a
revised terminal solver and the integration of domain knowl-
edge as constraints. In our empirical evaluations, we use the
CrazyAra engine on chess and crazyhouse as examples to
show that these changes bring significant improvements to
AlphaZero.

Introduction
The planning process of most humans for discrete domains
is said to resemble the AlphaZero Monte-Carlo Tree Search
(MCTS) variant (Silver et al. 2017), which uses a guid-
ance policy as its prior and an evaluation function to dis-
tinguish between good and bad positions (Hassabis et al.
2017). The human reasoning process, however, may not be
as stoic and structured as a search algorithm running on a
computer, and humans are typically not able to process as
many chess board positions in a given time. Nevertheless,
humans are quite good at making valid connections between
different subproblems and to reuse intermediate results for
other subproblems. In other words, humans not only look at
a problem step by step but are also able to jump between se-
quences of moves, so called trajectories; they seem to have
some kind of global memory buffer to store relevant infor-
mation. This gives a crucial advantage over a traditional tree
search, which does not share information between different
trajectories, although an identical state may occur.

Triggered by this intuition, the search tree is generalized
to a Directed Acyclic Graph (DAG), yielding Monte-Carlo
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Figure 1: It is possible to obtain the King’s Knight Open-
ing (A) with different move sequences (B, C). Trajectories
in bold are the most common move order to reach the final
position. As one can see, graphs are a much more concise
representation.

Graph Search (MCGS) (Saffidine, Cazenave, and Méhat
2012). The search in the DAG follows the scheme of the
Upper Confidence bounds for Trees (UCT) algorithm (Auer,
Cesa-Bianchi, and Fischer 2002), but employs a modified
forward and backpropagation procedure to cope with the
graph structure. Figure 1 illustrates, how nodes with more
than one parent, so called transposition nodes, allow to share
information between different subtrees and vastly improve
memory efficiency.

More importantly, a graph search reduces the amount of
neural network evaluations that normally take place when
the search reaches a leaf node. Together, MCGS can result
in a substantial performance boost, both for a fixed time con-



straint and for a fixed amount of evaluations. This is demon-
strated in an empirical evaluation on the example of chess
and its variant crazyhouse.

Please note, that we intentionally keep our focus here on
the planning aspect of AlphaZero. We provide a novel plan-
ning algorithm that is based on DAGs and comes with a
number of additional enhancements. Specifically, our con-
tributions for improving the search of AlphaZero are as fol-
lows:

1. Transforming the search tree of the AlphaZero framework
into a DAG and providing a backpropagation algorithm
which is stable both for low and high simulation counts.

2. Introducing a terminal solver to make optimal choices in
the tree or search graph, in situations where outcomes can
be computed exactly.

3. Combining the UCT algorithm with ε-greedy search
which helps UCT to escape local optima.

4. Using Q-value information for move selection which
helps to switch to the second best candidate move faster
if there is a gap in their Q-values.

5. Adding constraints to narrow the search to events that
are important with respect to the domain. In the case of
chess these are trajectories that include checks, captures
and threats.

We proceed as follows. We start off by discussing related
work. Then, we give a quick recap of the PUCT algorithm
(Rosin 2011), the variant of UCT used in AlphaZero, and
explain our realisation of MCGS and each enhancement in-
dividually. Before concluding, we touch upon our empirical
results. We explicitly exclude Reinforcement Learning (RL)
and use neural network models with pre-trained weights in-
stead. However, we give insight about the stability of the
search modifications by performing experiments under dif-
ferent simulation counts and time controls.

Related Work
There exists quite a lot of prior work on improving UCT
search. A comprehensive overview of these techniques is
covered by Browne et al. (2012). However, these earlier
techniques focus on a version of UCT, which only relies on a
value without a policy approximator. Consequently, some of
these extensions became obsolete in practice, providing an
insignificant improvement or even deteriorated the perfor-
mance. Each of the proposed enhancements also increases
complexity, and most require a full re-evaluation when they
are used for PUCT combined with a deep neural network.

Saffidine, Cazenave, and Méhat (2012) proposed to use
the UCT algorithm with a DAG and suggested an adapted
UCT move selection formula (1). It selects the next move at
with additional hyperparameters (d1, d2, d3) ∈ N3 by

at = argmaxa
(
Qd1(st, a) + Ud2,d3(st, a)

)
, (1)

where

Ud2,d3(st, a) = cpuct ·

√
log
∑
bNd2(st, b)

Nd3(st, a)
. (2)

The values for d1, d2 and d3 relate to the respective depth
and were chosen either to be 0, 1, 2 or ∞. Their algorithm
was tested on several environments, including a toy envi-
ronment called LEFTRIGHT, on the board game HEX and
on a 6 × 6 GO board using 100, 1000 and 10 000 simu-
lations, respectively. Their results were mixed. Depending
on the game, a different hyperparameter constellation per-
formed best and sometimes even the default UCT-formula,
corresponding to (d1 = 0, d2 = 0, d3 = 0), achieved the
highest score.

Choe and Kim (2019) and Bauer, Patten, and Vincze
(2019) build upon the approach of Saffidine, Cazenave,
and Méhat (2012). More specifically, Choe and Kim (2019)
modified the selection formula (2) while reducing the num-
ber of hyperparameters to two and applied the algorithm
to the card-game Heartstone. Similarly, Bauer, Patten, and
Vincze (2019) employed a tuned selection policy formula
of (2) which considers the empirical variance of rewards and
used it for the task of object pose verification.

Graphs were also studied as an alternative representation
in a trial-based heuristic tree search framework by Keller
and Helmert (2013) and further elaborated by Keller (2015).
Moreover, Childs, Brodeur, and Kocsis (2008) explored dif-
ferent variants for exploiting transpositions in UCT. Finally,
Pélissier, Nakamura, and Tabata (2019) made use of trans-
positions for the task of feature selection. All other directed
acyclic graph search approaches have in common that they
were developed and evaluated in UCT-like framework which
does not include an explicit policy distribution.

Also the other enhancement suggested in the resent paper,
namely the terminal solver, extends an already existing con-
cept. Chen, Chen, and Lin (2018) build up on the work by
Winands, Björnsson, and Saito (2008) and presented a ter-
minal solver for MCTS which is able to deal with drawing
nodes and allows to prune losing nodes.

Finally, challenged by the Montezuma’s Revenge environ-
ment, which is a hard exploration problem with sparse re-
wards, Ecoffet et al. (2021) described an algorithm called
Go-Explore which remembers promising states and their re-
spective trajectories. Subsequently, they are able to both re-
turn to these states and to robustify and optimize the cor-
responding trajectory. Their work only indirectly influenced
this paper, but gave motivation to abandon the search tree
structure and to keep a memory of trajectories in our pro-
posed methods.

The PUCT Algorithm
The essential idea behind the UCT algorithm is to iteratively
build a search tree in order to find a good choice within a
given time limit (Auer, Cesa-Bianchi, and Fischer 2002).
Nodes represent states st and edges denote actions at for
each time step t. Consider e. g. chess. Here, nodes represent
board positions and edges denote legal moves that transi-
tion to a new board position. Now, each iteration of the tree
search consists of three steps. First, selecting a leaf node,
then expanding and evaluating that leaf node and, finally, up-
dating the values V (st) and visit counts N(st) on all nodes
in the trajectory, from the selected leaf node up to the root
node.
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Figure 2: Scenario of accessing a child node on two possible
trajectories from different parent states. The proposed data
structure stores the visits and Q-values both on the edges and
in the nodes.

To narrow down the search, the PUCT algorithm, intro-
duced by Rosin (2011) and later refined by Silver et al.
(2017), makes use of a prior policy p. At each state st, for
every time step t, a new action at is selected according to
the UCT-formula (3) until either a new unexplored state s∗
or a terminal node sT is reached, i.e.,

at = argmaxa (Q(st, a) + U(st, a)) , (3)

where U(st, a) = cpuctP (st, a)

√∑
bN(st, b)

1 +N(st, a)
. (4)

The neural network fθ then evaluates the new unexplored
state s∗. Every legal action ai is assigned a policy value
P (s, ai) and the state evaluation ṽ is backpropagated along
the visited search path.

If we encounter a terminal state sT , then the constant eval-
uation of either −1, +1 or 0 is used instead. In the case of
a two player zero-sum game, the value evaluation ṽ is mul-
tiplied by −1 after each turn. The respective Q-values (Sut-
ton and Barto 2018) are updated by a Simple Moving Aver-
age (SMA):

Q′(st, a) = Q(st, a) +
1

n
[ṽ −Q(st, a)] . (5)

Unvisited nodes are treated as losses and assigned a value
of −1. Moreover, the Q- and U-values are weighted accord-
ing to the parameter cpuct which is scaled with respect to the
number of visits of a particular node:

cpuct(s) = log

∑
aN(s, a) + cpuct-base + 1

cpuct-base
+ cpuct-init . (6)

We choose cpuct-base to be 19652 and a cpuct-init value of 2.5
which is based on the choice of (Silver et al. 2017) but scaled
to a larger value range.

Monte-Carlo Graph Search
The main motivation of having a DAG structure is to share
computation from different branches and to reduce memory

allocation. If we reach a state, which has already been ex-
plored from a different subtree, we can make use of already
computed value estimates instead of solving the same sub-
problem from scratch. Specifically, we detect transpositions,
i.e., that the same position was reached on different trajec-
tories, by using a hash key function. If this is the case, we
create an edge between the current node and the pre-existing
subtrees. We incorporate the step counter within the transpo-
sition hash key. This way we cannot reach a state with the
same key more than once within a trajectory. Therefore, cy-
cles cannot occur.

However, there are other problems to consider. A naı̈ve
implementation would straightforwardly share information
between different subtrees by creating a deep copy of pre-
vious neural network evaluation results. Indeed, this allows
reusing previous evaluations and reducing the amount of
neural network requests. Hence, computational resources
are not wasted on reevaluating already known information,
but instead, new information is gained on each network eval-
uation. Unfortunately, additional memory is required to copy
the policy distribution and value of the pre-existing node and
the resulting tree structure uses at least as much memory as
the vanilla MCTS. Moreover, the backpropagation can be
conducted only on the traversed trajectory or on all possible
trajectories on which the transposition is accessible.

Updating all trajectories has both a bad scaling be-
haviour as well as leading to negative side-effects (Saffidine,
Cazenave, and Méhat 2012). If we only update the traversed
trajectory, we encounter the problem of leaking information
instead: each Q-value of the parent nodes of a tranposition
node bases its approximation only on a subset of the value
information within the subtree, but uses the full subtree for
node selection. Therefore, it loses the information which is
incorporated in the Q-value of the other parent nodes of
the transposition node. This phenomenon occurs more fre-
quently as the number of simulations increases and makes
this approach unstable.

In the following, we develop a solution for both of the key
issues: we address the memory problem, while preventing
information leaks. To this end, MCGS will be explained and
evaluated using PUCT for move selection.

Data-Structure
There are multiple possible data structures to realize a DAG
and to conduct backpropagation in a DAG. Q-values and vis-
its can be stored on the edges, on the nodes or even both.

We propose to store the Q-values on both to avoid infor-
mation leaking. Indeed, this is accompanied with a higher
memory consumption and a higher computational effort.
However, it also allows us to differentiate between the cur-
rent belief of the Q-value on the edge and the more precise
value estimation on the transposition node. The value esti-
mation of the next node is generally more precise or has the
same precision than the incoming Q-value on the edge be-
cause N(st, a) ≤ N(st+1).

As our data structure, we keep all trajectories of the cur-
rent mini-batch in memory, because these will later be used
during the backpropagation process.



Algorithm 1: Node Selection and Expansion of
MCGS

Data: rootNode, s0, Qε
Result: trajectory, value
node← rootNode;
st ← s0;
while node is not leaf do

(nextNode, edge)← select node using (3);
append (node, edge) to trajectory;
if nextNode is transposition then

Qδ ← Q(st, a)− V ∗(st+1);
if Qδ > Qε then

Qφ(st, a)←
N(st, a) ·Qδ(st, a) + V ∗(st+1);
Q′φ(st, a)←
max(Vmin,min(Qφ(st, a), Vmax));
value← Q′φ;
return trajectory, value;

if nextNode is terminal then
value← nextNode.value;
return trajectory, value;

node← nextNode;
st ← apply action edge.a on st;

expand node;
(node.v,node.p)← fθ(st);
value← node.v;
return trajectory, value;

Selection, Expansion and Backpropagation
With the data structure at hand, we can now realise the value
update as well as modify backpropagation correspondingly.
Consider the situation depicted in Figure 2. If the next node
of a simulation trajectory is a transposition node, i.e., a node
that has more than one parent node, we define our target
V ∗(st+1) for the Q-value Q(st, a) as the inverse of the next
value1 estimation:

V ∗(st) = −V (st). (7)

Now, we calculate the residual of our current Q-value be-
lief Q(st, a) compared to the more precise value estimation
V ∗(st+1) thereafter. We define this residual as Qδ:

Qδ(st, a) = Q(st, a)− V ∗(st+1), (8)

that measures the amount of the current information leak.
If our target value V ∗(st+1) has diverged from our cur-

rent belief Q(st, a), e. g. |Qδ| > 0.01, we already have a
sufficient information signal and do not require an additional
neural network evaluation. Consequently, we stop following
the current trajectory further and avoid expensive neural net-
work evaluations which are unlikely to provide any signif-
icant information gain. We call Qε the hyper-parameter for
the value of 0.01 and it remains the only hyper parameter in
this algorithm. If, however, |Qδ| ≤ Qε, then we iteratively
apply the node selection formula (3) of the PUCT algorithm

1For a single player game, V ∗(st+1) is equivalent to V (st+1).

Algorithm 2: Backpropagation of MCGS
Data: trajectory, value
Result: updated search graph
qTarget← NaN;
while (node, edge) in reverse(trajectory) do

if qTarget != NaN then
Qδ ← Q(st, a)− qTarget;
Qφ(st, a)← N(st, a) ·Qδ(st, a)+V ∗(st+1);
Q′φ(st, a)←
max(Vmin,min(Qφ(st, a), Vmax));
value← Q′φ;

else
value←−value;

update edge.q with value;
edge.n++;
update node.v with value;
node.n++;
if node is transposition then

qTarget←−node.v;
else

qTarget← NaN

to reach a leaf-node. Otherwise, in case of |Qδ| > Qε, we
backpropagate a value that does not make use of a neural
network evaluation and brings us close to V ∗(st+1). This
correction value, denoted as Qφ(st, a), is

Qφ(st, a) = N(st, a) ·Qδ(st, a) + V ∗(st+1) (9)

and can become greater than Qmax or smaller than Qmin for
large N(st, a). To ensure that we backpropagate a well-
defined value, we clip our correction value to be within
[Vmin, Vmax], i.e.,

Q′φ(st, a) = max(Vmin,min(Qφ(st, a), Vmax)). (10)

We also just incorporate the correction procedure of (9) and
(10) into the backpropagation process after every transposi-
tion node. A compact summary of the forward- and back-
propagation procedure is shown in Algorithm 1 and 2.

Discussion
Our MCGS algorithm makes several assumptions. First, we
assume the state to be Markovian, because the value es-
timation of trajectories with an alternative move ordering
is shared along transposition nodes. This assumption, how-
ever, might be violated if history information in the neural
network input representation. In practice, for environments
such as chess that are theoretically Markovian, this did not
result in a major issue.

As previously mentioned, our data-structure employs re-
dundant memory and computation for nodes that are cur-
rently not transposition nodes but may become transposition
nodes in the future. However, it should be considered that the
bottlekneck of AlphaZero’s PUCT algorithm is actually the
neural network evaluation, typically executed on a Graphics
Processing Unit (GPU). This may explain our observation
that spending a small overhead on more CPU computation
did not result in an apparent speed loss.



Bear in mind that a node allocates memory for several
statistics. While value and visits are scalar, a node also has
to hold the policy distribution for every legal move even if
it will never be used through the search. The memory con-
sumption of the latter is larger by orders of magnitude. As
a consequence, we observe a memory reduction of 30 % to
70 % depending on the position and the resulting amount of
transposition nodes.

Finally, we want to discuss how our changes to the Al-
phaZero search affect optimality guarantees. If no transpo-
sitions occur, our algorithm behaves identically to the orig-
inal (Silver et al. 2017). This statement holds true for all
subtrees near the leaf nodes, which do not hold any transpo-
sition nodes, yet. Thus, if for the first occurrence of a trans-
position node, which leads to one of these trees, the same
guarantees hold as in the original, the overall optimality can
be established by recursion. There are two cases in the node
selection phase that we need to consider. First, the Q-value
on the edge to the transposition node is the same as the value
of the transposition node. In this case, the evaluation, which
is later backpropagated, remains unaffected.

Second, the value of the transposition node has diverged
from the Q-value to the transposition node. This can hap-
pen if simulations have reached the transposition node from
a different trajectory before the current edge has been revis-
ited. In this case, we alter the evaluation during backpropa-
gation to the expectation of all skipped evaluations. Because
this expectation represents a more accurate evaluation than
a single evaluation, the convergence properties still apply.

Further Enhancements of MCGS
Beyond the MCGS algorithm, we propose a set of additional
independent enhancements to the AlphaZero planning algo-
rithm. In the following, we describe these methods in detail.

Improved Discovering of Forcing Trajectories
Due to sampling, MCGS may miss a critical move or sample
a move again and again even if it has been explored already
with an exact “game-theoretical” value. To help pruning los-
ing lines completely and increasing the chance of finding an
exact winning move sequence, we now introduce a termi-
nal solver into the planning algorithm (Chen, Chen, and Lin
2018). Doing so allows early stopping, and to select the so
far known shortest line when in a winning position. It also
provides a stronger learning signal during RL. Accordingly,
the longest line can be chosen, when in a losing position,
and if a step counter is computed.

Specifically, we add an identifier called END IN PLY,
which keeps track of the number of steps until a termi-
nal node is reached. When a new node has been solved,
END IN PLY is assigned the same value as a desig-
nated child node and is then incremented by one. In
case of a LOSS, the terminal solver chooses the child
node with the highest END IN PLY value and the small-
est value in case of a WIN or DRAW. The variable
UNKNOWN CHILDREN COUNT describes the number of
child nodes where the state is UNKNOWN. Besides that,
we add three new node states TB WIN, TB LOSS, and

Algorithm 3: Backpropagation of Exact-win-
MCTS 2.0

if has-loss-child then
mark WIN;
parent.UNKNOWN CHILDREN COUNT--;
END IN PLY← minchild(END IN PLYchild) + 1;

if UNKNOWN CHILDREN COUNT == 0 then
if has-draw-child then

mark DRAW;
parent.UNKNOWN CHILDREN COUNT--;
END IN PLY← minchild(END IN PLYchild)
+ 1;

else
mark LOSS;
parent.UNKNOWN CHILDREN COUNT--;
END IN PLY← maxchild(END IN PLYchild)

+ 1;

TB DRAW, which are used to determine forced lines to reach
a table base position. If a node has been proven to be a
TB LOSS/LOSS, then we prune its access by setting its Q-
value to −∞ and policy value to 0.0.

As argued in Table 1, this terminal solver gives a sig-
nificant advantage over other terminal solvers. Optimality
is preserved because only nodes are pruned that lead to
losing terminal nodes using a forced sequence of moves.
The pseudo-code of the backpropagation for determining the
node states WIN, LOSS and DRAW is shown in Algorithm 3.
The computation of solving node states that can reach a ta-
ble base position by force is carried out analogously to the
aforementioned one. As soon as we reach a tablebase posi-
tion, we can still make use of our value evaluation of our
neural network model, in order to converge to a winning ter-
minal node faster. If we only used the tablebase value eval-
uation instead, we would encounter the problem of reaching
a plateau and our search would be unable to differentiate be-
tween different winning or losing node states.

In order to accelerate the convergence to terminal nodes,
we decouple the forward and backpropagation process of
terminal trajectories and allow a larger amount of terminal
trajectories during the creation of a mini-batch.

Random Exploration to Avoid Local Optima
The ε-greedy search is a well known exploration mecha-
nism which is often applied in RL algorithms such as Q-
learning (Watkins and Dayan 1992). The idea behind ε-
greedy search is to follow the so far best known trajec-
tory and to explore a different action with a probability
εgreedy instead. Over time, the influence of the prior policy
in the PUCT algorithm diminishes and more simulations are
spend on the action with the current maximum Q-value. For-
mula (3) is meant to provide a mechanism to balance exploit-
ing known values and exploring new, possibly unpromising
nodes. In fact, it is proven that this formula will find an opti-
mal solution with a sufficient amount of simulations (Auer,
Cesa-Bianchi, and Fischer 2002).

However, in practice, we see that a lot of the times the



Table 1: Comparison of different terminal solver implementations.

Exact-win-MCTS 2.0 (Ours) Exact-win-MCTS MCTS-Solver+MCTS-MB

Node States WIN, LOSS, DRAW, UNKNOWN WIN, LOSS, DRAW, UNKNOWN WIN and LOSS
Optional Node States TB WIN, TB LOSS, TB DRAW - -

Member Variables UNKNOWN CHILDREN COUNT, UNKNOWN CHILDREN COUNT -
END IN PLY

Nodes have been proven Prune Prune May revisit
Draw games 3 3 7

Supports Tablebases 3 7 7

Selects shortest found mate 3 7 7

fully deterministic PUCT algorithm from AlphaZero needs
an unpractical amount of simulations to revisit optimal ac-
tions where the value evaluations of the first visits are mis-
leading. This motivates adding stochasticity to sooner es-
cape such scenarios. Breaking the rule of full determinism
and employing some noise is also motivated by optimiza-
tion algorithms such as SGD (Srivastava et al. 2014) as well
as dropout (Srivastava et al. 2014) that improve convergence
and robustness. In the context of RL it was suggested by Sil-
ver et al. (2017) to apply Dirichlet noise Dir(α) on the pol-
icy distribution p of the root node to increase exploration.
However, this technique has several disadvantages when be-
ing employed in a tournament setting particularly with large
simulation budgets.

Utilizing a static Dirichlet noise at the root node gen-
erally increases the exploration rate of a few unpromising
actions because the amount of suboptimal actions is often
larger than relevant actions. Therefore, it is more desirable
to apply uniform noise. Additionally, it is favorable to apply
such noise not only at root level but at every level of the tree.
Such additional uniform noise is what underlies the ε-greedy
algorithm.

PUCT, UCT and ε-greedy have a lot in common by trying
to find a good compromise for the exploration-exploitation
dilemma. PUCT and UCT usually converge faster to the op-
timal trajectory than ε-greedy (Sutton and Barto 2018). ε-
greedy selects actions greedily but with static uniform noise,
instead. Therefore, it provides a suitable mechanism to over-
come local optima where PUCT gets stuck. The ε-greedy al-
gorithm can be straightforwardly implemented at the root
level of the search as there is no side-effect of sampling
a random node from the root node, except of potentially
wasting simulations on unpromising actions. However, if the
mechanism is utilized at nodes deeper in the tree, we disre-
gard the value expectation formalism and corrupt all its par-
ent nodes on its trajectory.

Following this regime, we propose to use disconnected
trajectories for ε-greedy exploration. Specifically, a new ex-
ploration trajectory is started if a random variable uniformly
drawn from [0, 1] is ≤ ε. Next, we determine the depth on
which we want to start the branching. We want to generally,
prefer branching at early layers. Therefore, we draw a new
random variable r2 and exponentially reduce the chance of
choosing a layer with increasing depth

depth = − log2(1− r2)− 1 . (11)

Unexplored nodes are expanded in descending order. Usu-
ally, the policy is ordered already, to allow a more effi-
cient dynamic memory allocation and node-selection for-
mula. Therefore this step does not require an additional over-
head.

Note that, if we use random exploration at the root node,
the guarantees of the original algorithm are not violated as it
simply represents a form of root parallelization. Indeed, this
statement does not apply to higher depths as it leads to an
intentional information leak. However, we aim to bound the
amount of information leaked by choosing a low probability
for random exploration.

Using Q-Value information for Move Selection
The default move selection policy π is based on the visits
distribution of the root node which can optionally be ad-
justed by a temperature parameter τ ,

π(a|s0) = N(s0, a)
1
τ /
(∑

b
N(s0, b)

1
τ

)
. (12)

Including the Q-values for move selection can be benefi-
cial because the visits and Q-value distribution have a differ-
ent convergence behaviour. The visit distribution increases
linearly over time whereas the Q-value can converge much
faster if the previously best move found was found to be los-
ing. In (Czech et al. 2020), it was proposed to use a linear
combination of the visits and Q-values to build the move
selection policy π. Now, we choose a more conservative ap-
proach and only inspect the action with the highest and sec-
ond highest visits count which we label aα and aβ respec-
tively. Next, we calculate the difference in their Q-values

Q∆(s0, aα, aβ) = Q(s0, aβ)−Q(s0, aα), (13)
and if Q∆(s0, aα, aβ) was found to be > 0, then we boost
π(aβ , |s0) by πcorr(s0, aα, aβ)

π(aβ , |s0)
′ = π(aβ , |s0) + πcorr(s0, aα, aβ) , (14)

where
πcorr(s0, aα, aβ) = QweightQ∆(s0, aα, aβ)π(aα, |s0), (15)

and re-normalize π afterwards. Qweight acts as an optional
weighting parameter which we set to 2.0 because our Q-
values are defined to be in [−1,+1].

This technique only involves a small constant overhead
and helps to switch to the second candidate move faster, both
in tournament conditions as well as when used in the target
distribution during RL.
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Figure 3: Elo development relative to the number of neural
network evaluations in crazyhouse.

Incorporating Domain Knowledge through
Constraints
It is a common advice in chess — both on amateur and mas-
ter level — to first explore moves that are checks, captures
and threats. Hence, we add the constraint to first explore all
checking moves before other moves during ε-greedy explo-
ration. We again choose a depth according to (11) and follow
the so far best known move sequence for expanding a so far
unvisited checking move.

The checking moves are being explored according to the
ordering of the neural network policy, which makes the ex-
ploration of more promising checking moves happen earlier.
After all checking moves have been explored, the node is
assigned a flag and the remaining unvisited nodes are ex-
panded. After all moves have been expanded, the same pro-
cedure as for ε-greedy search is followed. As above, we dis-
able backpropagation for all preceding nodes on the trajec-
tory when expanding a check node and choose an εcheck
value of 0.01. In this scenario, we test the expansion of
checking moves but it could be extended to other special
move types, such as capture or threats as well.

A benefit of this technique is that it provides the guaran-
tee, that all checking at earlier depth are explored quickly,
even when the neural network policy fails to acknowledge
them, and without influencing the value estimation of its par-
ent nodes.

Empirical Evaluation
Our intention here is to evaluate the benefits of our MCGS
and the aforementioned search modifications empirically. In
particular, we want to investigate whether each of the contri-
butions boost the performance of AlphaZero’s planning in-
dividually and whether a combination is beneficial.

In our evaluation we use pre-trained convolutional neu-
ral network models. For crazyhouse we use a model of the
RISEv2 (Czech et al. 2020) architecture which was first
trained on ≈0.5 million human games of the lichess.org
database and subsequently improved by 436±30 Elo over
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Figure 4: Elo development relative to the number of neural
network evaluations in chess.
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Figure 5: Elo development in crazyhouse over time of
MCGS compared to MCTS which uses a hash table as a
transposition buffer to copy neural network evaluations.

the course of ≈2.37 million self-play games 2.
The same network architecture was then employed for

chess and trained on the free Kingbase 2019 dataset (Havard
2019) with the same training setup as in (Czech et al. 2020).
After convergence the model scored a move validation accu-
racy of 57.2 % and a validation mean-squared-error of 0.44
for the value loss. This re-implementation is labeled as Al-
phaZero* because of not being the original implementation
and a different set of hyperparameters values. One of the
changes compared to AlphaZero is the avoidance of Dirich-
let noise by setting εDir to 0.0 and the usage of Nodeτ which
flattens the policy distribution of each node in the search
tree. The hardware configuration used in our experiments
achieves about 17 000 neural network evaluations per sec-
ond for the given neural network architecture.

In our first experiment as shown in Figure 5, we compare
the scaling behaviour in crazyhouse between our presented
MCGS algorithm and a re-implementation of the AlphaZero

2https://github.com/QueensGambit/CrazyAra
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Figure 6: Elo comparison of the proposed search modifica-
tion in crazyhouse using five seconds per move.

algorithm that also makes use of a transposition table to store
neural network evaluations. We observe that MCGS out-
performed the transposition look-up table approach across
all time controls, demonstrating that MCGS can be imple-
mented efficiently and excels by providing a more expres-
sive information flow along transposition nodes. In particu-
lar, it becomes apparent, that the Elo gap between the two
algorithms slightly increases over time, suggesting an even
better performance in the long run or when executed on
stronger hardware.

Next, we investigate the scaling behaviour relative to the
number of neural network evaluations in Figure 3 and 4.
Again, we can draw a similar conclusion. For a small amount
of nodes, the benefit of using all MCGS with all enhance-
ments over AlphaZero* is relatively small, but increases the
longer the search is performed. We state the number of neu-
ral network evaluations per move instead of the number of
simulations because this provides a better perspective on the
actual run-time cost. Terminal visits as well as the backprop-
agation of correction values Qφ(st, a) as shown in (10) can
be fully executed on CPU during the GPU computation.

To put the results into perspective we also add the perfor-
mance of Multi-Variant Stockfish3 2020-06-13 3 in Figure
using one million nodes per move. For chess we use the of-
ficial Stockfish 12 release with 10 000 nodes per move as
our baseline, which uses a NNUE-network (Yu 2018)4 as its
main evaluation function. The playing strength between the
MCGS for crazyhouse and chess greatly differs in strength,
however, this is primarily attributed to the model weights
and not the search algorithm itself. For evaluating the per-
formance in both chess and crazyhouse we use a list of dif-
ferent starting positions to have more diverse games, fewer
draws and in crazyhouse a lower opening advantage for the
first player.2

3https://github.com/ddugovic/Stockfish
4nn-82215d0fd0df.nnue

M
CG

S-
Co

m
bi

ne
d

M
CG

S

En
ah

nc
ed

 C
he

ck
s

Q
-V

al
ue

s 
fo

r 
M

ov
e

Ep
si

lo
n-

G
re

ed
y

Te
rm

in
al

 S
ol

ve
r

Al
ph

aZ
er

o*

−50

−25

0

25

50

75

100

R
el

at
iv

e 
E

lo

Figure 7: Elo comparison of the proposed search modifica-
tion in chess using five seconds per move.

At last we evaluate each search modification individually
as seen in Figure 6 and Figure 7. The amount of nodes per
game generally increases over the course of a game because
the subtree of the previous search is reused for proceeding
searches.

Each individual search modification appears to improve
the performance, whereas using MCGS instead of a tree
structure yields the greatest benefit. In crazyhouse, MCGS
resulted in ≈+110 Elo followed by ε-greedy with ≈+100
Elo. Combining all enhancement at once, which we refer to
as MCGS-Combined, leads to ≈+310 Elo and greatly sur-
passed each variant individually. In the case of chess, the
impact is not as evident as for crazyhouse but we also rec-
ognize an improvement in performance of ≈+69 Elo when
using MCGS and all search enhancements at once.

Conclusions
Our experimental results clearly show that using DAGs in-
stead of trees significantly increases the efficiency and per-
formance of the search in AlphaZero. Each individual en-
hancement that we propose gives better results, but the
combination exceeds them all and remains stable for large
graphs. Together, they boost the performance of CrazyAra,
the current state-of-the-art engine in crazyhouse. For chess
we see less drastic, but still respectable improvements given
the models, that were learned through supervised learning.

Our results suggest that MCGS gains in value, the longer
the search is executed or on stronger hardware. Moreover,
MCGS should be further improved by sharing key trajecto-
ries between nodes that are not an exact transposition but
similar to each other. Furthermore, one should move be-
yond the planning setting and explore, how MCGS effects
the learning in an RL setting and non-chess environments.

Beyond that, the proposed techniques are in principal ap-
plicable outside the AlphaZero framework. It is an interest-
ing avenue for future work, to evaluate them in different
search frameworks such as UCT or ε-greedy search.
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