

Getting deep systems that reason and know when they don't know Responsible Al systems that explain their decisions and co-evolve with the humans Open Al systems that are easy to realize and understandable for the domain experts My team and I in the Machine Learning group would like to make computers learn so much about the world, so rapidly and flexibly, as humans.

2017 - now: Professor (W3) for Machine Learning at the CS Department of the TU Darmstadt, Germany
 2013 - 2017: Associate Professor (W2) for Data Mining at the CS Department of the TU Dortmund University, Germany
 2012 - 2013: Assistant Professor (W1) for Spatio-Temporal Pattern in Agriculture at the Faculty of Agriculture of the University of Bonn, Germany
 2008 - 2012: Fraunhofer Attract research group leader at the Fraunhofer IAIS, Germany
 2007: PostDoctoral Associate at MIT CSAIL, USA, working with Leslie Kaelbling, Josh Tenenbaum, and Nicholas Roy.
 2000 - 2006: Ph.D. student at the CS Department of the University of Freiburg, Germany, working with Luc De Raedt (supervsior) and Wolfram Burgard.
 1996 - 2000: Diploma in Computer Science at the CS Department of the University of Freiburg, Germany

Deep Probabilistic Learning 🛟 UBER ALLabs Allabs

The dream of Al is not new

Talos, an ancient mythical automaton with artificial intelligence

MEDELA AND TALVS

Al seems to have many faces

Saviour of the world

Downfall of humanity

What is Al?

Humans are smart

https://www.youtube.com/watch?v= XQ79UUIOeWc

Al asks, can machines be smart, too?

"the science and engineering of making intelligent machines, especially intelligent computer programs.

It is related to the similar task of using computers to understand human intelligence, but AI does not have to confine itself to methods that are biologically observable."

- John McCarthy, Stanford (1956), coined the term AI, Turing Awardee

1956 – The Birth of Al

Learning Thinking Planning

AI = Algorithms for ...

Vision

Robotic

Reading

Machine Learning

the science "concerned with the question of how to construct computer programs that automatically improve with experience"

- Tom Mitchell (1997) CMU

Deep Learning

a form of machine learning that makes use of artificial neural networks

Geoffrey Hinton Google Univ. Toronto (CAN)

Yoshua Bengio Univ. Montreal (CAN)

Overall Picture

Al does the laundry

Al is an Artist

Ô

Schachmatt durch "CrazyAra"

19.02.2019

Künstliche Intelligenz schlägt mehrfachen Weltmeister im Einsetzschach

lichess.org

Der von den TU-Studierenden Johannes Czech, Moritz Willig und Alena Beyer entwickelte Bot "CrazyAra" hat den Schachprofi Justin Tan in einem Online-Match der Schach-Variante "Crazyhouse" mit 4:1 geschlagen. Gelernt hat der Bot mittels künstlicher neuronaler Netze, was ihm erlaubt, vorausschauend Entscheidungen zu treffen. Das Besondere: Die Studierenden konnten damit einen Erfolg auf einem Feld feiern, das sonst von Giganten wie Google dominiert wird.

Al plays chess and GO

CrazyAra vs JannLee (Man vs Machine - Crazyhouse Chess on lichess.org) - 2 days ag Category: Chess

Al assists you

Not a real person

Real person

P(heart | III)?

P(heart | attack

)?

Natarajan, Khot, Kersting, Shavlik. Boosted Statistical Relational Learners. Springer Brief 2015

Relational

Understanding Electronic Health Records

[Kersting, Driessens ICML'08; Karwath, Kersting, Landwehr ICDM'08; Natarajan, Joshi, Tadepelli, Kersting, Shavlik. IJCAI'11; Natarajan, Kersting, Ip, Jacobs, Carr IAAI `13; Yang, Kersting, Terry, Carr, Natarajan AIME '15; Khot, Natarajan, Kersting, Shavlik ICDM'13, MLJ'12, MLJ'15, Yang, Kersting, Natarajan BIBM`17]

https://www.youtube.com/watch?v=sdUHX72qxeY

0

Optical Illusions

Stereotypes

Google Photos, y'all fucked up. My friend's not a gorilla.

Q 3,515 people are talking about this

REPORTS PSYCHOLOGY

>

Semantics derived automatically from language corpora contain human-like biases

Aylin Caliskan^{1,*}, Joanna J. Bryson^{1,2,*}, Arvind Narayanan^{1,*} + See all authors and affiliations

Science 14 Apr 2017: Vol. 356, Issue 6334, pp. 183-186 DOI: 10.1126/science.aal4230

Townstoweds	A staff. manda		Origin	al Find	ing	Our Finding				
larget words	Attrib. words	Ref	N	d	р	NT	NA	d	р	
Flowers vs insects	Pleasant vs unpleasant	(5)	32	1.35	10 ⁻⁸	25×2	25×2	1.54	10-7	
Instruments vs weapons	Pleasant vs unpleasant	(5)	32	1.66	10 ⁻¹⁰	25×2	25×2	1.63	10 ⁻⁸	
EurAmerican vs AfrAmerican names	Pleasant vs unpleasant	(5)	26	1.17	10 ⁻⁵	32×2	25×2	0.58	10-2	
EurAmerican vs AfrAmerican names	Pleasant vs unpleasant	(7)	Not applicable			18×2	25×2	1.24	10-3	
EurAmerican vs AfrAmerican names	Pleasant vs unpleasant from (5)	(7)	N	lot appl	icable	18×2	8×2	0.72	10-2	
Male vs female names	Career vs family	(9)	39k	0.72	10^{-2}	8×2	8×2	1.89	10-4	
Math vs arts	Male vs female terms	(9)	28k	0.82	$< 10^{-2}$	8×2	8×2	0.97	.027	
Science vs arts	Male vs female terms	(10)	91 1.47 10 ⁻²⁴		8×2	8×2	1.24	10-2		
Mental vs physical disease	Temporary vs permanent	(23)	135	1.01	10^{-3}	6×2	7×2	1.30	.012	
Young vs old people's names	old Pleasant vs ames unpleasant		43k	1.42	$< 10^{-2}$	8×2	8×2	08	0.57	

The third wave of Al

Al systems that can acquire human-like communication and reasoning capabilities, with the ability to recognise new situations and adapt to them.

DNNs often have no probabilistic semantics. They are not $P(Y|X) \neq P(Y,X)$ calibrated joint distributions.

MNIST て、9562 ノス5006

SVHN

SEMEION

Train & Evaluate

Transfer Testing [Bradshaw et al. arXiv:1707.02476 2017]

Many DNNs cannot distinguish the datasets

[Peharz, Vergari, Molina, Stelzner, Trapp, Kersting, Ghahramani UDL@UAI 2018]

Random sum-product networks

UNIVERSITY OF

[Peharz, Vergari, Molina, Stelzner, Kersting, Ghahramani UAI 2019]

UBER AI Labs

TECHNISCHE

UNIVERSITÄT DARMSTADT

Build a random SPN structure. This can be done in an informed way or completely at random

TABLE II PERFORMANCE COMPARISON. BEST END-TO-END THROUGHPUTS (T), EXCLUDING THE CYCLE COUNTER MEASUREMENTS, ARE DENOTED BOLD

Dataset	Rows	CPU (µs)	T-CPU (rows/ µs)	CPUF (µs)	T-CPUF (rows/ µs)	GPU (µ5)	T-GPU (rows/ µs)	FPGA Cycle Counter	FPGAC (µs)	T-FPGAC (rows/ µs)	FPGA (µs)	T-FPGA (rows/ µs)
Accidents	17009	2798.27			7.87	63090.94	0.27	17249		100	696.00	24.44
Audio	20000	4271.78			5.4		B	20317	1		761.00	26.28
Netflix	20000	4892.22			4.8	~		20322	1		654.00	30.58
MSNBC200	388434	15476.05			30.5		1	388900	19		008.00	77.56
MSNBC300	388434	10060.78			41.2		and the	388810	19	8643 ·	933.00	78,74
NLTCS	21574	791.80			31.3	Mr		21904	1		566.00	38.12
Plants	23215	3621.71	6.41	3521.04	6.59	67004.41	0.35	23592	117.96	196.80	778.00	29.84
NIPS5	10000	25.11	398.31	26.37	379.23	8210.32	1.22	10236	51.18	195.39	337.30	29.03
NIPS10	10000	83.60	119.61	84.39	118.49	11550.82	0.87	10279	51.40	194.57	464.30	21.54
NIPS20	10000	191.30	52.27	182.73	54.72	18689.04	0.54	10285	51.43	194.46	543.60	18.40
NIPS30	10000	387.61	25.80	349.84	28.58	25355.93	0.39	10308	51.80	193.06	592.30	16.88
NIPS40	10000	551.64	18.13	471.26	21.22	30820.49	0.32	10306	51.53	194.06	632.20	15.82
NIPS50	10000	812.44	12.31	792.13	12.62	36355.60	0.28	10559	52.80	189.41	720.60	13.88
NIPS60	10000	1046.38	9.56	662.53	15.09	40778.36	0.25	12271	61.36	162.99	799.20	12.51
NIPS70	10000	1148.17	8.71	1134.80	8.81	46759.26	0.21	14022	70.11	142.63	858.60	11.65
NIPS80	10000	1556.99	6.42	1277.81	7.83	63217.99	0.16	14275	78.51	127.37	961.80	10.40

How do we do data science offshore?

There are generic protocols to validate computations on authenticated data without knowledge of the secret key

DNA MSPN ##### Gates: 298208 Yao Bytes: 9542656 Depth: 615

DNA PSPN #### Gates: 228272 Yao Bytes: 7304704 Depth: 589

NIPS MSPN #### Gates: 1001477 Yao Bytes: 32047264 Depth: 970

Homomorphic sum-product network [Molina, Weinert, Treiber, Schneider, Kersting 2019]

FASA

[Vergari, Molina, Peharz, Ghahramani, Kersting, Valera AAAI 2019]

Max Planck Institute for Intelligent Systems

Federal Ministry
of Education
and Research

TECHNISCHE

UNIVERSITÄT

DARMSTADT

The Explorative Automatic Statistician

UNIVERSITY OF

CAMBRIDGE

 X1
 X2
 X3
 X4
 X5

 Xa
 I
 I
 I
 I
 I

 Xa
 I
 I
 I
 I
 I

 Xa
 I
 I
 I
 I
 I
 I
 I

 Xa
 I
 I
 I
 I
 I
 I
 I
 I

 Xa
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

UBER AI Labs

We can even automatically discovers the statistical types and parametric forms of the variables

That is, the machine understands the data with few expert input ...

...and can compile data reports automatically

*Similar to [Lapuschkin et al., Nature Communication 10:1096, 2019]

The machine understands the data with no expert input ...

...and can compile data reports automatically

The woman is playing the violin.

That song is dope The music is really cool.

That band totally rocks

I can speak two languages

The young lady enjoys listening to the guitar

Neural Embeddings

Words and sentences in vector spaces

. . .

Semantic Textual Similarity

1.0

0.8

0.6

0.4

0.2

0.0

The Moral Choice Machine Not all stereotypes are bad

[Jentzsch, Schramowski, Rothkopf, Kersting AIES 2019]

AAAI / ACM conference on ARTIFICIAL INTELLIGENCE, ETHICS, AND SOCIETY

The Moral Choice Machine

Not all stereotypes are bad

[Jentzsch, Schramowski, Rothkopf, Kersting AIES 2019]

AAAI / ACM conference on ARTIFICIAL INTELLIGENCE, ETHICS, AND SOCIETY

https://www.hr-fernsehen.de/sendungen-az/hauptsache-kultur/sendungen/hauptsachekultur,sendung-56324.html

Video 05:10 Min. Der Hamster gehört nicht in den Toaster – Wie Forscher von der TU Darmstadt versuchen, Maschinen … [Videoseite]

hauptsache kultur | 14.03.19, 22:45 Uhr

Algorithms of intelligent behaviour teach us a lot about ourselves

The twin science: cognitive science

"How do we humans get so much from so little?" and by that I mean how do we acquire our understanding of the world given what is clearly by today's engineering standards so little data, so little time, and so little energy.

Centre for Cognitive Science at TU Darmstadt

Establishing cognitive science at the Technische Universität Darmstadt is a long-term commitment across multiple departments (see <u>Members</u> to get an impression on the interdisciplinary of the supporting groups and departments). The TU offers a strong foundation including several established top engineering groups in Germany, a prominent computer science department (which is among the top four in Germany), a

Centre for Cognitive Science

Josh Tenenbaum, MIT

Lake, Salakhutdinov, Tenenbaum, Science 350 (6266), 1332-1338, 2015 Tenenbaum, Kemp, Griffiths, Goodman, Science 331 (6022), 1279-1285, 2011

Machine Learning and Artificial Intelligence: Two Fellow Travelers on the Quest for Intelligent Behavior in Machines

🛞 Kristian Kersting

Federal Ministry of Education and Research

DIE PLATTFORM FÜR KÜNSTLICHE INTELLIGEN