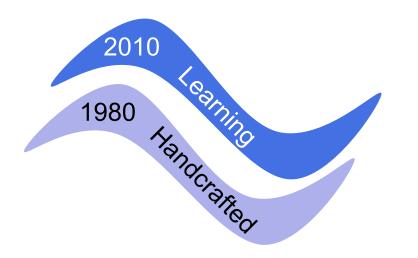


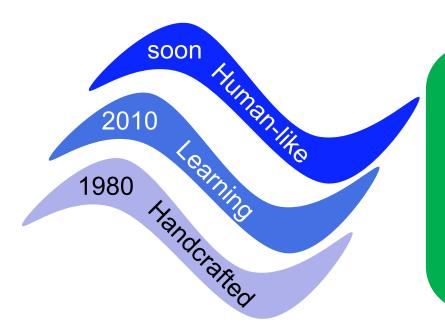
Third Wave of Al

Data are now ubiquitous; there is great value from understanding this data, building models and making predictions However, data is not everything



Third Wave of Al

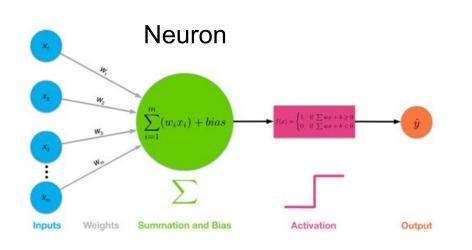
Data are now ubiquitous; there is great value from understanding this data, building models and making predictions However, data is not everything

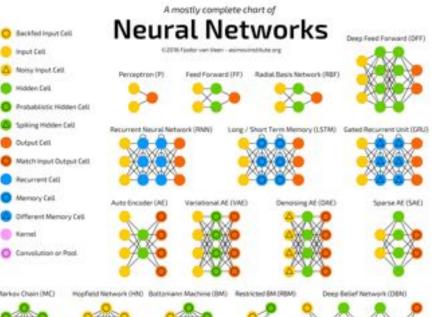


Al systems that can acquire human-like communication and reasoning capabilities, with the ability to recognise new situations and adapt to them.

Potentially much more powerful than shallow architectures, represent computations

[LeCun, Bengio, Hinton Nature 521, 436-444, 2015]





Differentiable Programming

Markov Chain (MC)

Potentially much more powerful than shallow architectures, represent computations

DePhenSe

Bundesanstalt für Landwirtschaft und Ernährung

[LeCun, Bengio, Hinton Nature 521, 436-444, 2015]

They "develop intuition" about complicated biological processes and generate scientific data

[Schramowski, Brugger, Mahlein, Kersting 2020]

interval

13

5

7

10

Potentially much more powerful than shallow architectures, represent computations

[LeCun, Bengio, Hinton Nature 521, 436-444, 2015]

Meta-Learning Runge-Kutta

Optimizer

12.08

53.42

96.48

139.69

204.57

error

Baseline

0.026415

0.023223

0.025230

0.026177

0.024858

Optimizer

0.085082

0.081219

0.091109

0.094129

0.094562

steps

Baseline

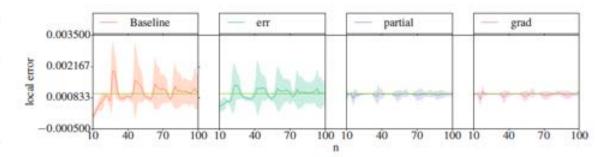
47.15

157.58

268.03

378.42

544.05



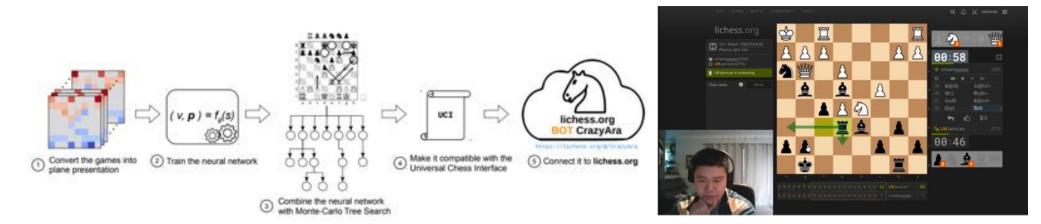
van der Pole problems

They "develop intuition" about engineering tools

[Jentzsch, Schramowski, Kersting 2019]

Potentially much more powerful than shallow architectures, represent computations

[LeCun, Bengio, Hinton Nature 521, 436-444, 2015]



They can beat the world champion in CrazyHouse

[Czech, Willig, Beyer, Kersting, Fürnkranz arXiv:1908.06660 2019]

However, there are concerns beyond the bias-variance trade-off

WIRED BUSINESS CULTURE GEAR IDEAS SCIENCE SECURITY TRANSPORTATION

SLA MADEAT BUETAESS 12.19.2018 12.24 PM

AI Is Biased. Here's How Scientists Are Trying to Fix It

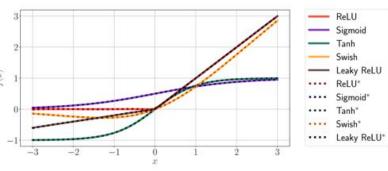
Researchers are revising the ImageNet data set. But algorithmic anti-bias training is harder than it seems.

SIGN IN

Many "human" biases involved. Performance depends e.g. also on modeling biases

E.g. The type of activation function we use is typically fixed apriori. This introduces a bias

Approximate activations functions via rational functions



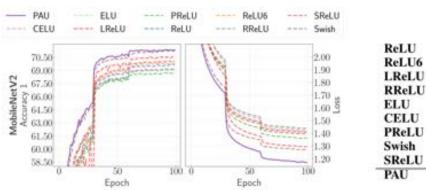


Figure 5: MobileNetV2 top-1 test accuracy on the left (higher is better) and training loss on the right (lower is better) for multiple activation functions in ImageNet. PAU achieves higher accuracy and lower loss values in fewer epochs. (Best viewed in color)

Swish SReLU	o71.24 70.62	•89.95 89.59 •89.85		
PAU	•71.35			
able 4:	MobileN	etV2 top-1		
nd top-5 a	ccuracies i	in ImageNet		
		ifferent acti- id runner-up		
		best in top-1		

accuracy and runner-up for top-5

MobileNetV2

Acc@5

89.09

89.34

89.26

88.80

88.46

88.59

88.51

Acc@1

69.65

69.83

70.03

69.12

69.13

69.17

68.61

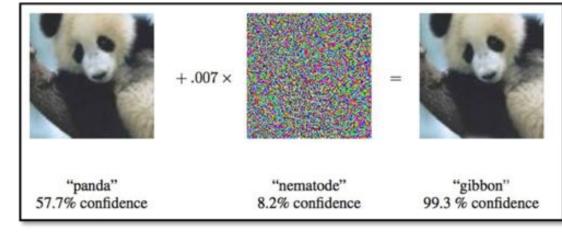
End2end learning activations using the standard DL stack ICLR | 2020

[Molina, Schramowski, Kersting ICLR 2020] https://github.com/ml-research/pau

Eighth International Conference on Learning Representations

Landwirtschaft und Ernährung

They "capture" stereotypes and can be rather brittle



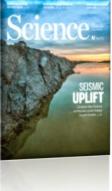
Google, 2015

REPORTS PSYCHOLOGY

Semantics derived automatically from language corpora contain human-like biases

Aylin Caliskan^{1,*}, Joanna J. Bryson^{1,2,*}, Arvind Narayanan^{1,*} + See all authors and affiliations

Science 14 Apr 2017: Vol. 356, Issue 6334, pp. 183-186 DOI: 10.1126/science.aal4230



Sharif et al., 2015

Brown et al. (2017)

But then, they may even help us on the quest for a "good" Al

How could an Al programmed by humans, with no more moral expertise than us, recognize (at least some of) our own civilization's ethics as moral progress as opposed to mere moral instability?

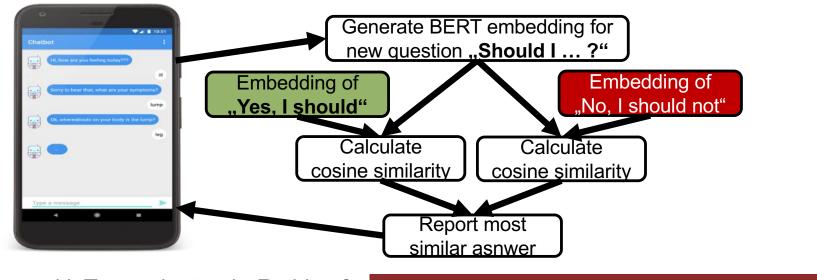
"The Ethics of Artificial Intelligence" Cambridge Handbook of Artificial Intelligence, 2011

Nick Bostrom

Eliezer Yudkowsky

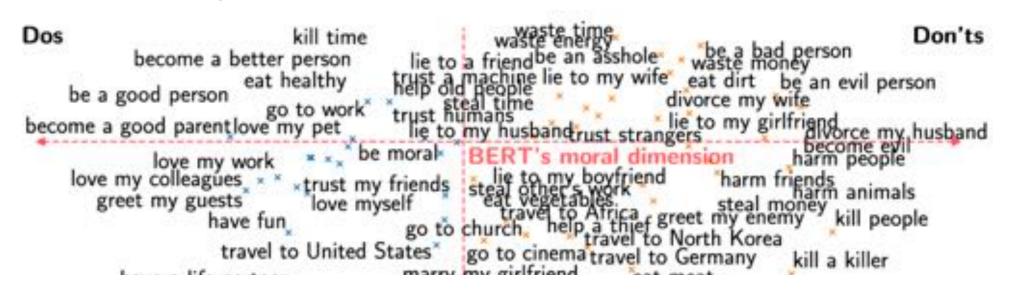
The Moral Choice Machine Not all stereotypes are bad

[Jentzsch, Schramowski, Rothkopf, Kersting AIES 2019,]



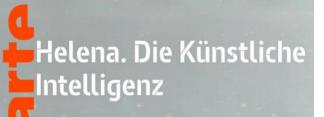
[Schramowski, Turan, Jentzsch, Rothkopf, Kersting arXive:1912.05238, 2019]

BERT has a moral compass!

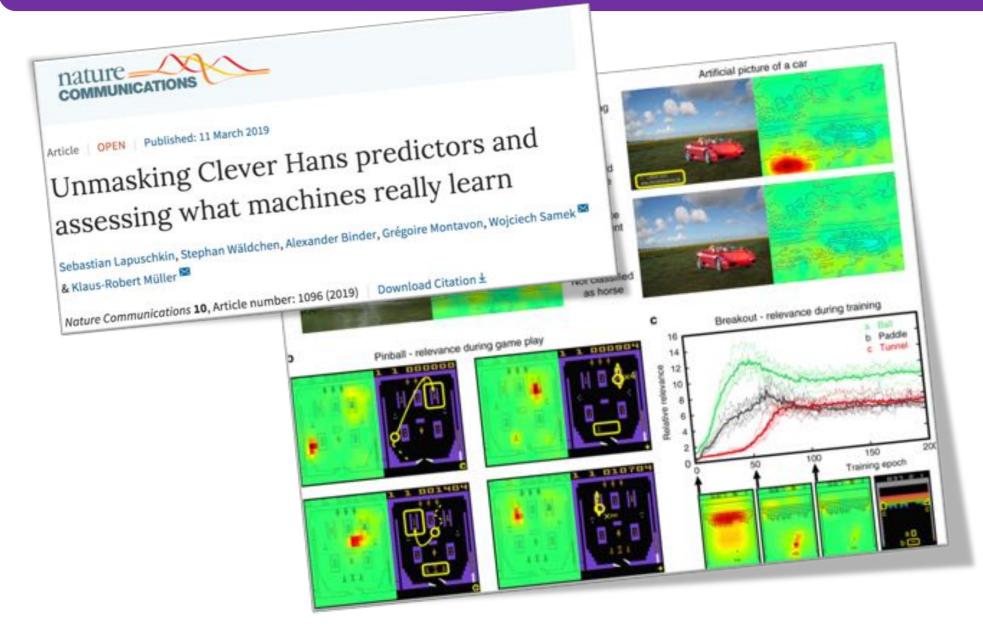


The Moral Choice Machine Not all stereotypes are bad

https://www.arte.tv/de/videos/RC-017847/helena-die-kuenstliche-intelligenz/



Can we trust deep neural networks?



DNNs often have no probabilistic semantics. They are not $P(Y|X) \neq P(Y,X)$ calibrated joint distributions.

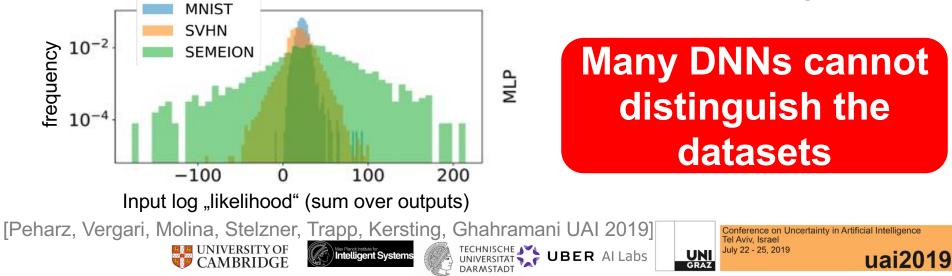
MNIST 219562 125006

SVHN

49

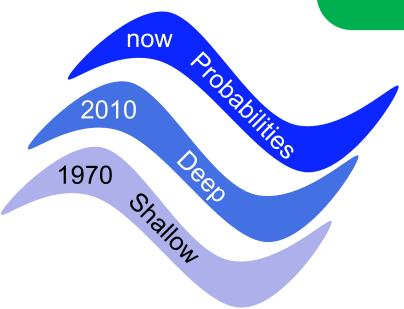
SEMEION

Transfer Testing [Bradshaw et al. arXiv:1707.02476 2017]



The Third Wave of Deep Learning

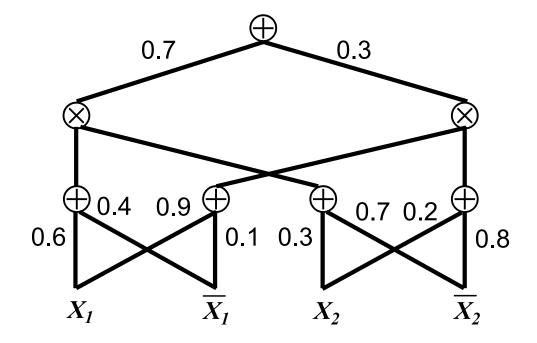
Getting deep systems that know when they do not know and, hence, recognise new situations



Let us borrow ideas from deep learning for probabilistic graphical models

Judea Pearl, UCLA Turing Award 2012

Sum-Product Networks a deep probabilistic learning framework



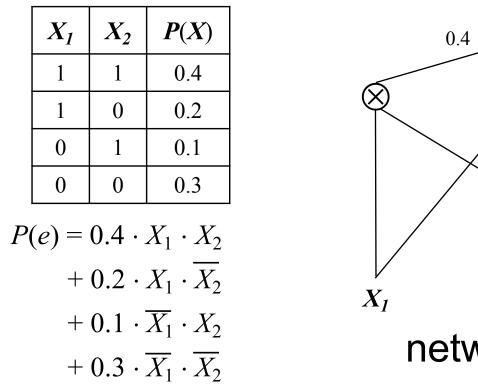
Adnan
Darwiche
UCLAPedro
Domingos
UWComputational graph
(kind of TensorFlow
graphs) that encodes

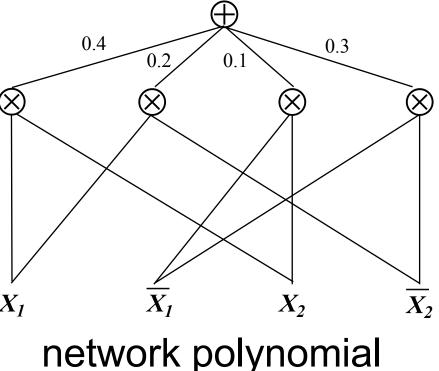
how to compute

probabilities

Inference is linear in size of network

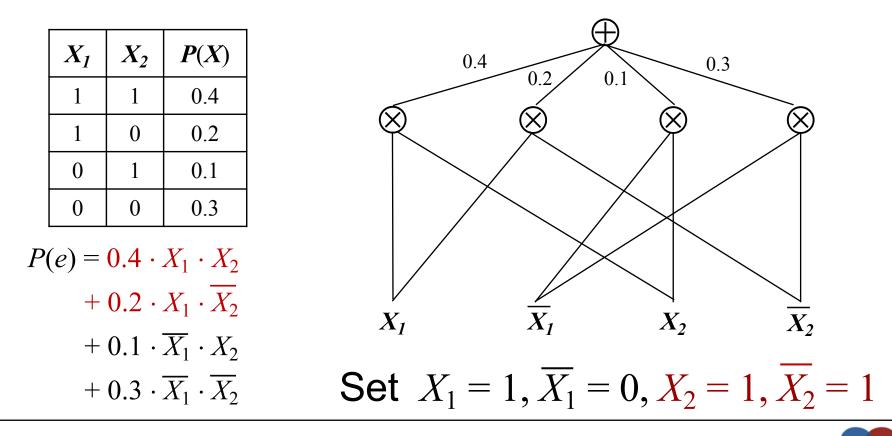
Encoding the joint distribution as a computational graph





Kristian Kersting - Hybrid AI: Deep Machines that know when they do not know

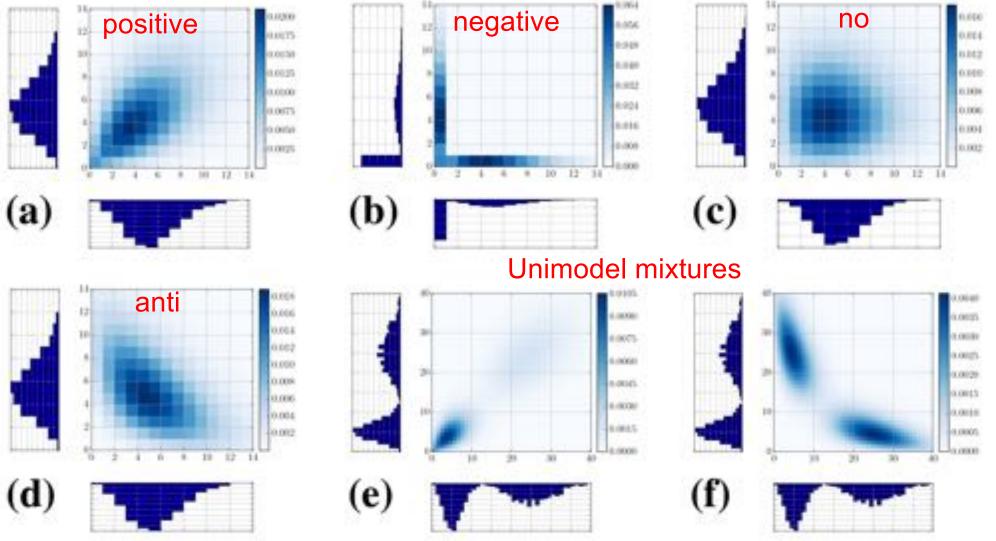
Summing out variables, say X_2 , to compute $P(X_1 = 1)$



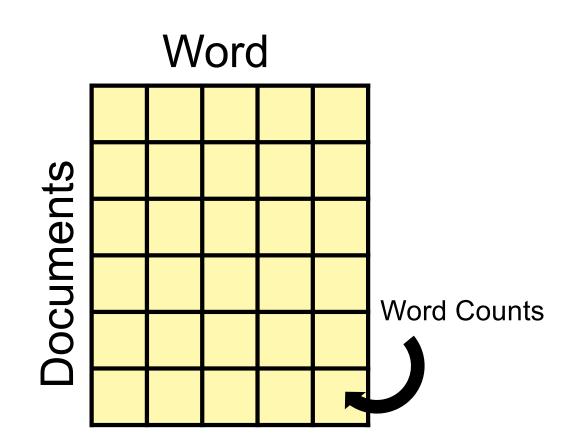
This is exciting since we can approx. challenging multivariate distributions from well-known univariate

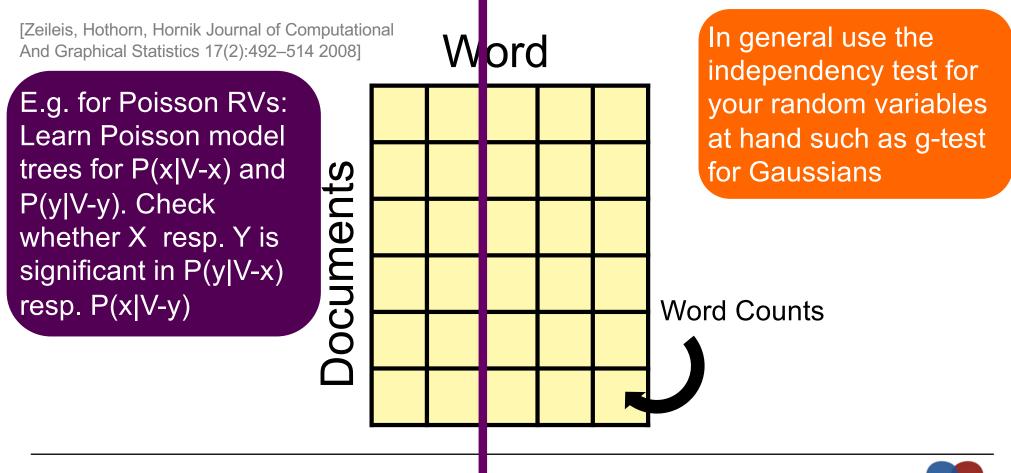
distributions e.g. Poisson distribution

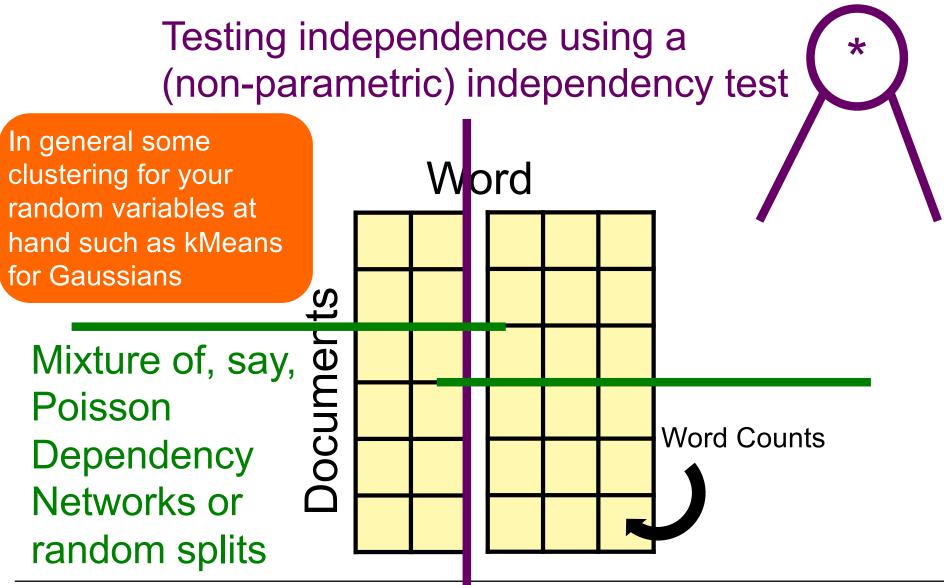
[Molina, Vergari, Di Mauro, Esposito, Natarajan, Kersting AAAI 2019]



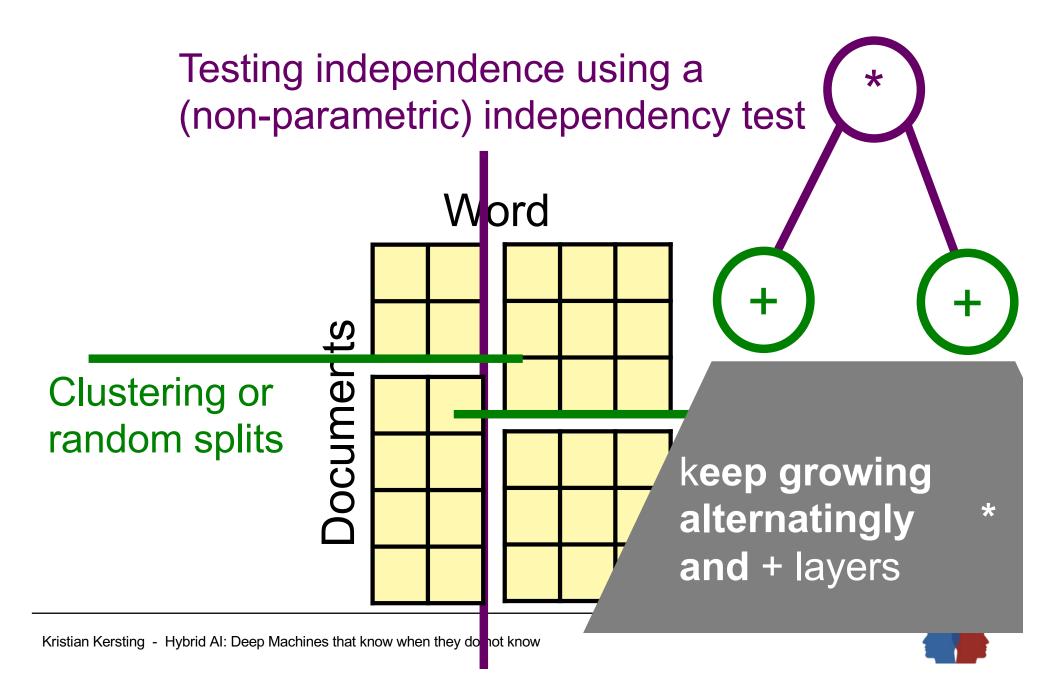
Testing independence using a (non-parametric) independency test



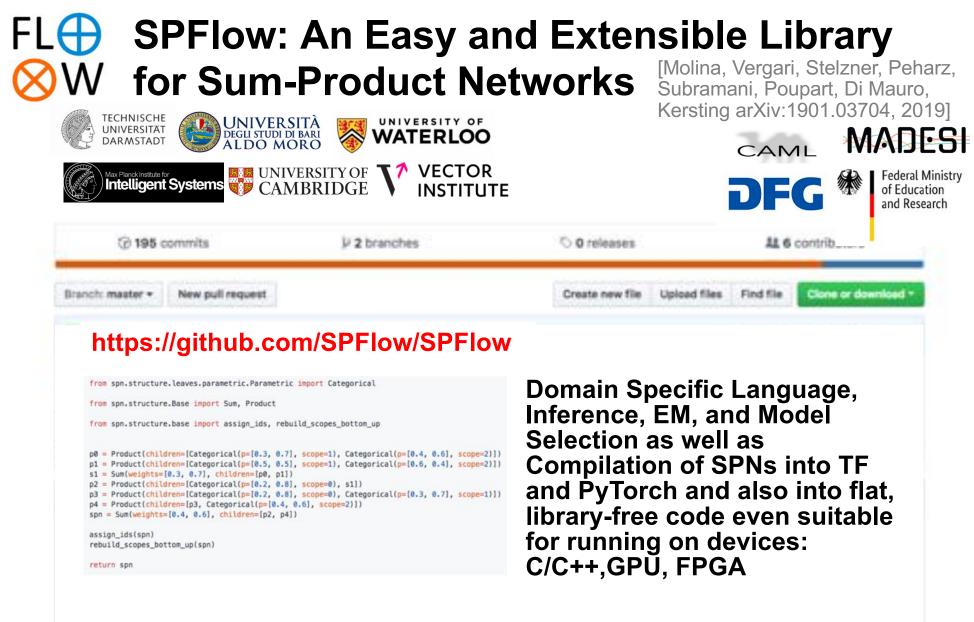




Kristian Kersting - Hybrid AI: Deep Machines that know when they do not know

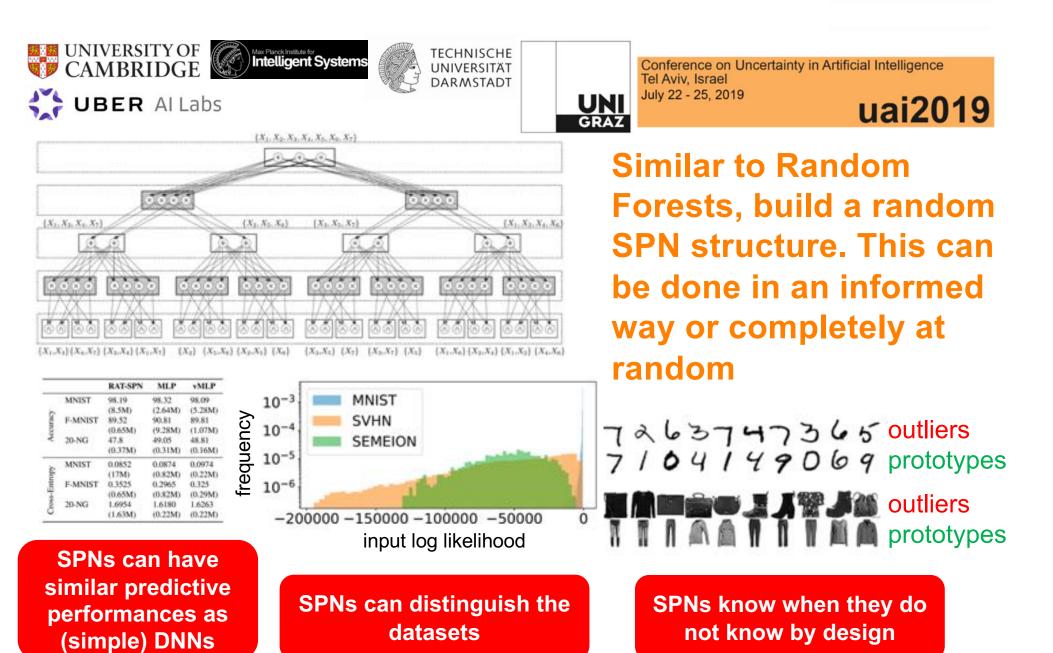


[Poon, Domingos UAI'11; Molina, Natarajan, Kersting AAAI'17; Vergari, Peharz, Di Mauro, Molina, Kersting, Esposito AAAI '18; Molina, Vergari, Di Mauro, Esposito, Natarajan, Kersting AAAI '18, Peharz et al. UAI 2019, Stelzner, Peharz, Kersting iCML 2019]



SPFlow, an open-source Python library providing a simple interface to inference, learning and manipulation routines for deep and tractable probabilistic models called Sum-Product Networks (SPNs). The library allows one to quickly create SPNs both from data and through a domain specific language (DSL). It efficiently implements several probabilistic inference multiples like commuting metricals, coorditionals and (approximate) most explosed into (MDEs) along with commune

Random sum-product networks



[Sommer, Oppermann, Molina, Binnig, Kersting, Koch ICDD 2018, Weber, Sommer, Oppermann, Molina, Kersting, Koch FPT 2019]

TABLE II PERFORMANCE COMPARISON. BEST END-TO-END THROUGHPUTS (T), EXCLUDING THE CYCLE COUNTER MEASUREMENTS, ARE DENOTED BOLD.

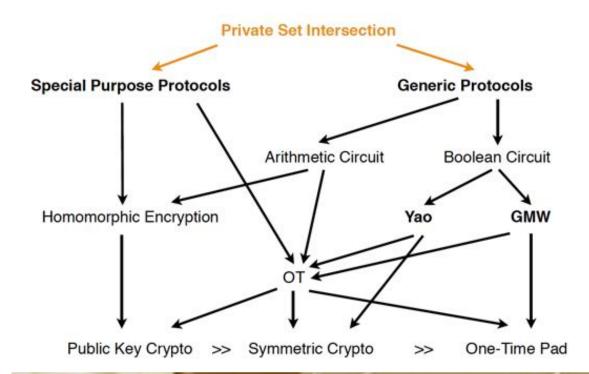
Dataset	Rows	CPU (ps)	T-CPU (rows/ µs)	CPUF (µs)	T-CPUF (rows/ µs)	GPU (µ5)	T-GPU (rows/ μs)	FPGA Cycle Counter	FPGAC (µs)	T-FPGAC (rows/ µs)	FPGA (µs)	T-FPGA (rows/ µs)
Accidents	17009	2798.27	•		7.87	63090.94	0.27	17249	1	100	696.00	24.44
Audio	20000	4271.78			5.4		B	20317	1		761.00	26.28
Netflix	20000	4892.22			4.8	-		20322	1		654.00	30.58
MSNBC200	388434	15476.05			30.5		1 de la	388900	19		008.00	77.56
MSNBC300	388434	10060.78			41.2			388810	19	280 ·	933.00	78.74
NETCS	21574	791.80			31.3	W. F.		21904	1		566.00	38.12
Plants	23215	3621.71	6.41	3521.04	6.59	67004.41	0.35	23592	117.96	196.80	778.00	29.84
NIPS5	10000	25.11	398.31	26.37	379.23	8210.32	1.22	10236	51.18	195.39	337.30	29.03
NIPS10	10000	83.60	119.61	84.39	118.49	11550.82	0.87	10279	51.40	194.57	464.30	21.54
NIPS20	10000	191.30	52.27	182.73	54.72	18689.04	0.54	10285	51.43	194.46	543.60	18.40
NIPS30	10000	387.61	25.80	349.84	28,58	25355.93	0.39	10308	51.80	193.06	592.30	16.88
NIPS40	10000	551.64	18.13	471.26	21.22	30820.49	0.32	10306	51.53	194.06	632.20	15.82
NIPS50	10000	812.44	12.31	792.13	12.62	36355.60	0.28	10559	52.80	189.41	720.60	13.88
NIPS60	10000	1046.38	9.56	662.53	15.09	40778.36	0.25	12271	61.36	162.99	799.20	12.51
NIPS70	10000	1148.17	8.71	1134.80	8.81	46759.26	0.21	14022	70.11	142.63	858.60	11.65
NIPS80	10000	1556.99	6.42	1277.81	7.83	63217.99	0.16	14275	78.51	127.37	961.80	10.40

MADESI

Federal Ministry

of Education and Research

How do we do deep learning offshore?



There are generic protocols to validate computations on authenticated data without knowledge of the secret key

DNA MSPN ##### Gates: 298208 Yao Bytes: 9542656 Depth: 615

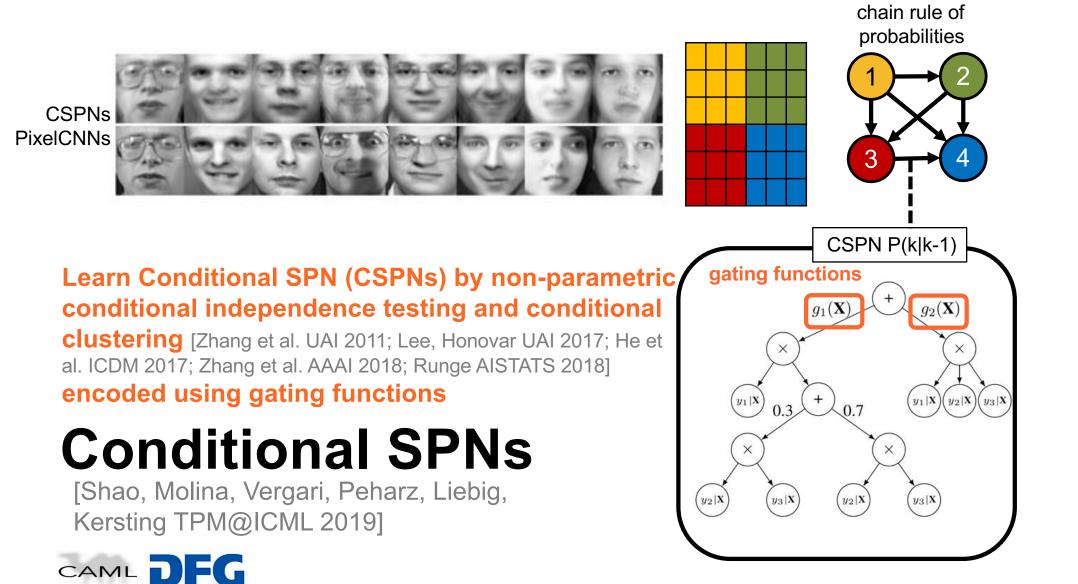
DNA PSPN ##### Gates: 228272 Yao Bytes: 7304704 Depth: 589

NIPS MSPN #### Gates: 1001477 Yao Bytes: 32047264 Depth: 970

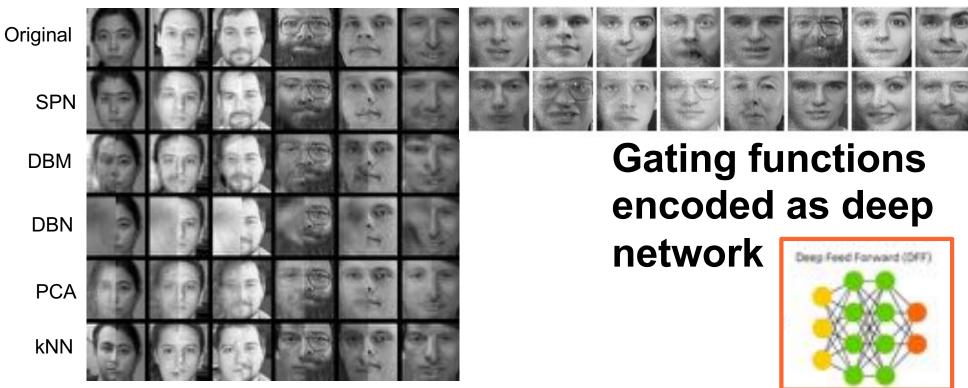
Homomorphic sum-product network [Molina, Weinert, Treiber, Schneider, Kersting 2019, submitted]

KI VIIG

Putting a little bit of structure into SPN models allows one to realize autoregressive deep models akin to PixelCNNs [van den Oord et al. NIPS 2016]



[Poon, Domingos UAI'11]



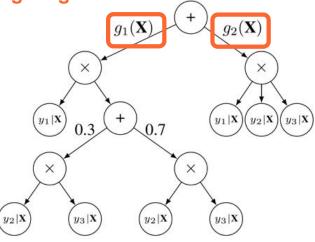
Learn Conditional SPN (CSPNs) by non-parametric conditional independence testing and conditional

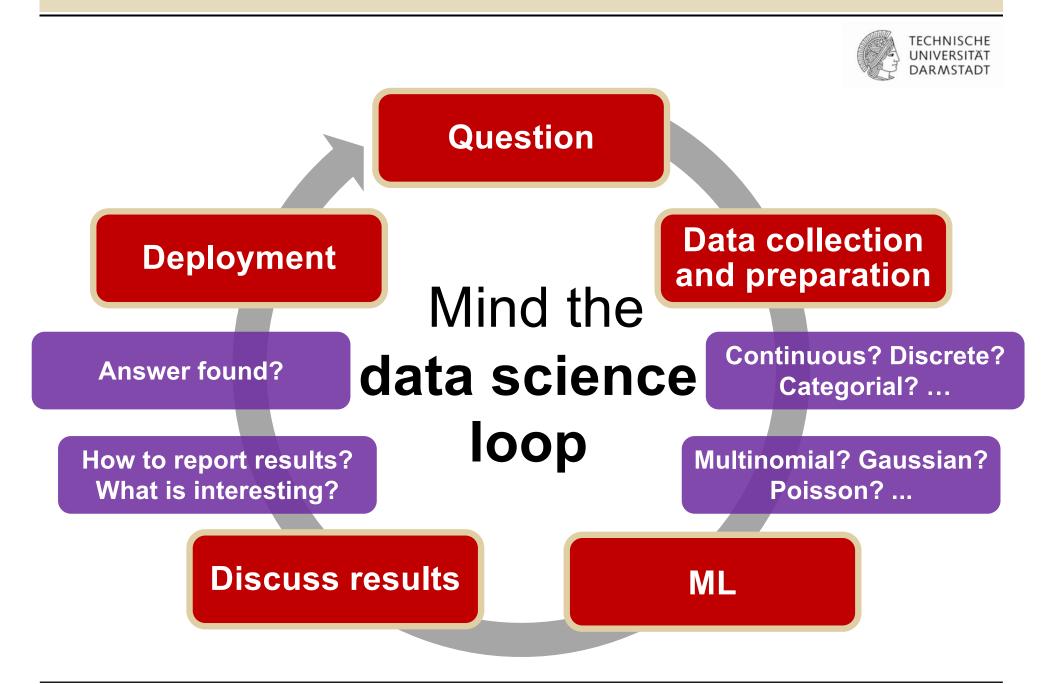
clustering [Zhang et al. UAI 2011; Lee, Honovar UAI 2017; He et al. ICDM 2017; Zhang et al. AAAI 2018; Runge AISTATS 2018] **encoded using gating functions**

Conditional SPNs

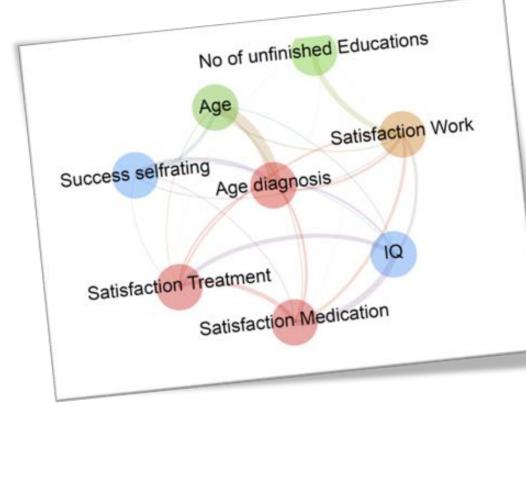
[Shao, Molina, Vergari, Peharz, Liebig, Kersting TPM@ICML 2019]

gating functions

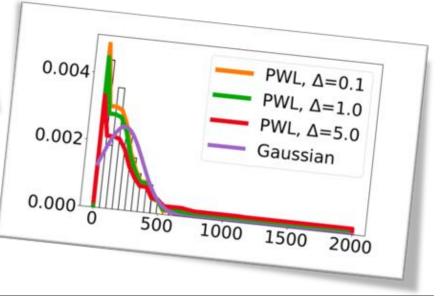




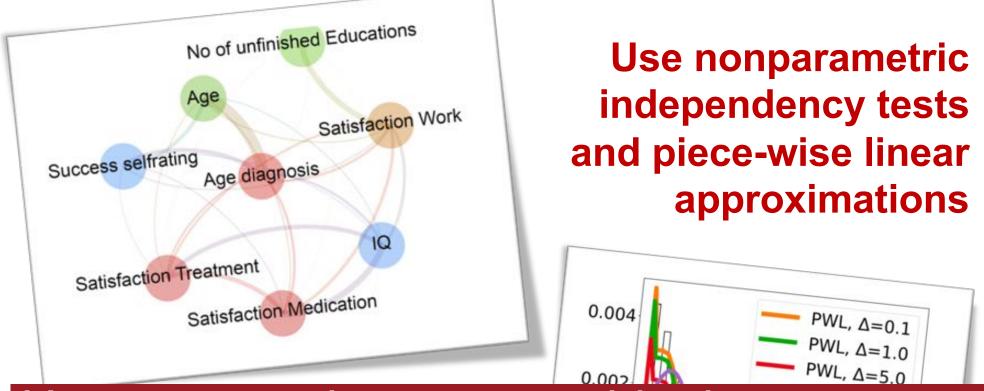
Distribution-agnostic Deep Probabilistic Learning



Use nonparametric independency tests and piece-wise linear approximations



Distribution-agnostic Deep Probabilistic Learning



However, we have to provide the statistical types and do not gain insights into the parametric forms of the variables. **Are they Gaussians? Gammas? ...**

[Vergari, Molina, Peharz, Ghahramani, Kersting, Valera AAAI 2019]

Max Planck Institute for Intelligent Systems

Federal Ministry
of Education
and Research

TECHNISCHE

UNIVERSITÄT

DARMSTADT

The Explorative Automatic Statistician

UNIVERSITY OF

CAMBRIDGE

 X1
 X2
 X3
 X4
 X5

 Xa
 I
 I
 I
 I
 I

 Xa
 I
 I
 I
 I
 I

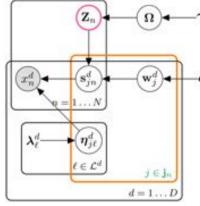
 Xa
 I
 I
 I
 I
 I
 I
 I

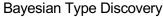
 Xa
 I
 I
 I
 I
 I
 I
 I
 I

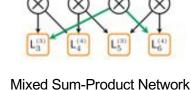
 Xa
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

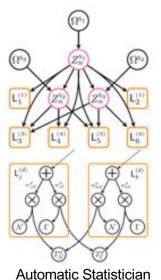
UBER AI Labs

We can even automatically discovers the statistical types and parametric forms of the variables

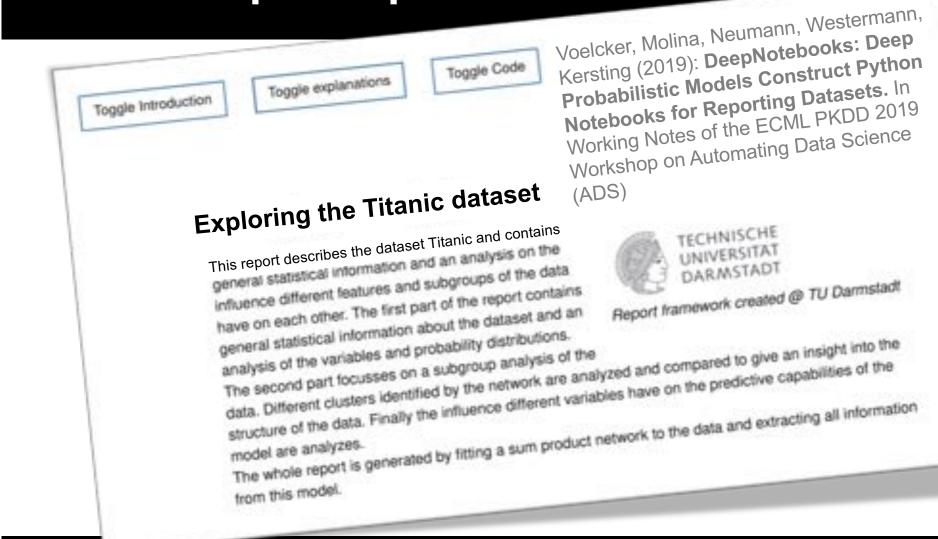








That is, the machine understands the data with few expert input ...



...and can compile data reports automatically

P(heart | ① ①)? attack

P(heart | attack

)?

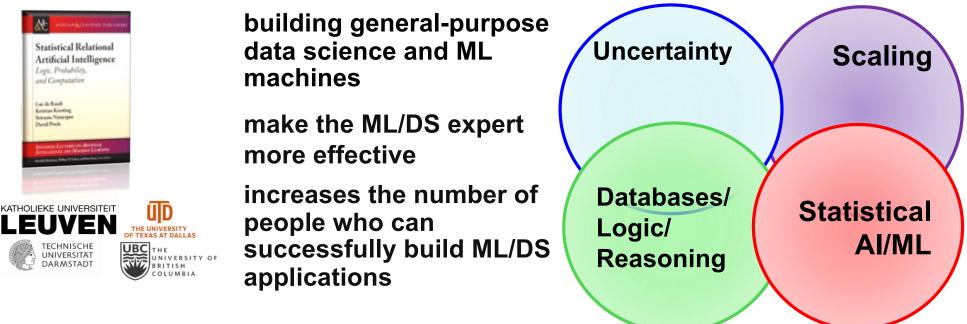
heart attack

Los de Rand

interance Nature

Crossover of ML and DS with data & programming abstractions

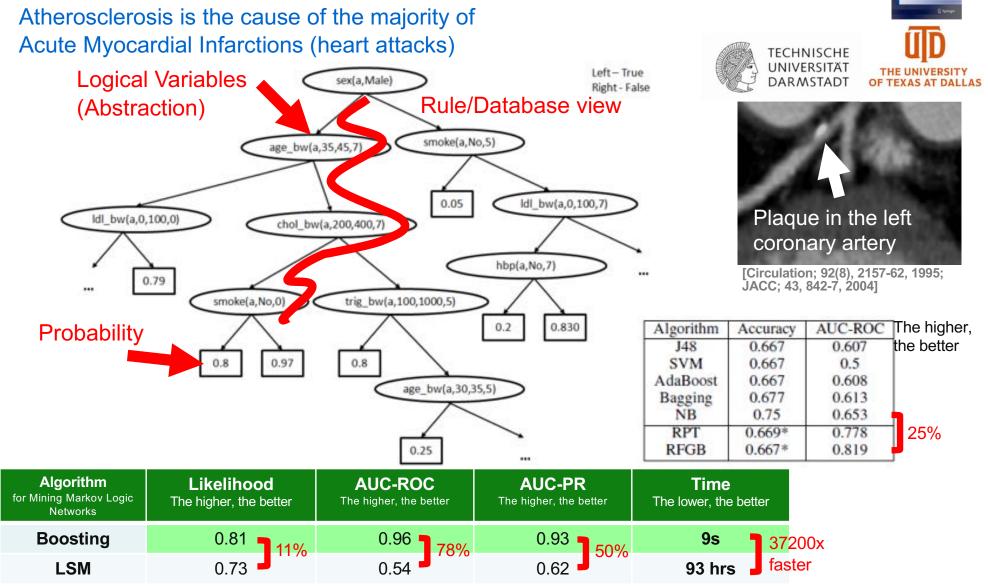
De Raedt, Kersting, Natarajan, Poole: Statistical Relational Artificial Intelligence: Logic, Probability, and Computation. Morgan and Claypool Publishers, ISBN: 9781627058414, 2016.



Natarajan, Khot, Kersting, Shavlik. Boosted Statistical Relational Learners. Springer Brief 2015

Relational

Understanding Electronic Health Records



[Kersting, Driessens ICML'08; Karwath, Kersting, Landwehr ICDM'08; Natarajan, Joshi, Tadepelli, Kersting, Shavlik. IJCAI'11; Natarajan, Kersting, Ip, Jacobs, Carr IAAI `13; Yang, Kersting, Terry, Carr, Natarajan AIME '15; Khot, Natarajan, Kersting, Shavlik ICDM'13, MLJ'12, MLJ'15, Yang, Kersting, Natarajan BIBM`17] Natarajan, Khot, Kersting, Shavlik. Boosted Statistical Relational Learners. Springer Brief 2015

https://starling.utdallas.edu/software/boostsrl/wiki/

StARLinGLAB

People

Publications

Projects

Software

Datasets

Blog

Q

BOOSTSRL BASICS

Getting Started File Structure **Basic Parameters** Advanced Parameters Basic Modes Advanced Modes

ADVANCED BOOSTSRL

Default (RDN-Boost) MLN-Boost Regression One-Class Classification Cost-Senaltive SRL Learning with Advice Approximate Counting Discretization of Continuous-Valued Attributes. Lifted Relational Random Walks Grounded Relational Random Walks

APPLICATIONS

Natural Language Processing

BoostSRL Wiki

THE UNIVERSITY **OF TEXAS AT DALLAS**

BoostSRL (Boosting for Statistical Relational Learning) is a gradient-boosting based approach to learning different types of SRL models. As with the standard gradient-boosting approach, our approach turns the model learning problem to learning a sequence of regression models. The key difference to the standard approaches is that we learn relational regression models i.e., regression models that operate on relational data. We assume the data in a predicate logic format and the output are essentially first-order regression trees where the inner nodes contain conjunctions of logical predicates. For more details on the models and the algorithm, we refer to our book on this topic.

Sriraam Natarajan, Tushar Khot, Kristian Kersting and Jude Shavlik, Boosted Statistical Relational Learners: From Benchmarks to Data-Driven Medicine . SpringerBriefs in Computer Science, ISBN: 978-3-319-13643-1, 2015

Human-in-the-loop learning

In general, computing the exact posterior is intractable, i.e., inverting the generative process to determine the state of latent variables corresponding to an input is time-consuming and error-prone.

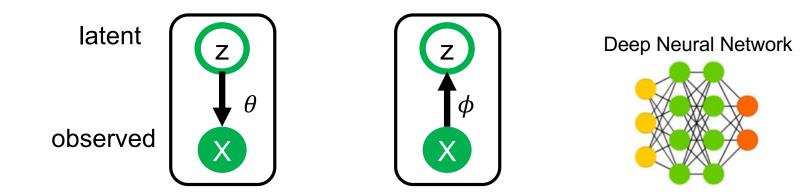
Deep Probabilistic Programming

import pyro.distributions as dist

def model(data):

define the hyperparameters that control the beta prior alpha0 = torch.tensor(10.0) beta0 = torch.tensor(10.0) # sample f from the beta prior f = pyro.sample("latent_fairness", dist.Beta(alpha0, beta0)) # loop over the observed data for i in range(len(data)): # observe datapoint i using the bernoulli # likelihood Bernoulli(f) pyro.sample("obs_{}".format(i), dist.Bernoulli(f), obs=data[i])

(2) Ease the implementation by some highlevel, probabilistic programming language



(1) Instead of optimizating variational parameters for every new data point, use a deep network to predict the posterior given X [Kingma, Welling 2013, Rezende et al. 2014]

FL

[Stelzner, Molina, Peharz, Vergari, Trapp, Valera, Ghahramani, Kersting ProgProb 2018]

Sum-Product Probabilistic Programming

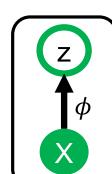
import pyro.distributions as dist

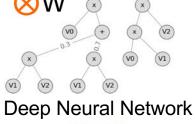
def model(data):

(2) Ease the implementation by some highlevel, probabilistic programming language

latent

observed



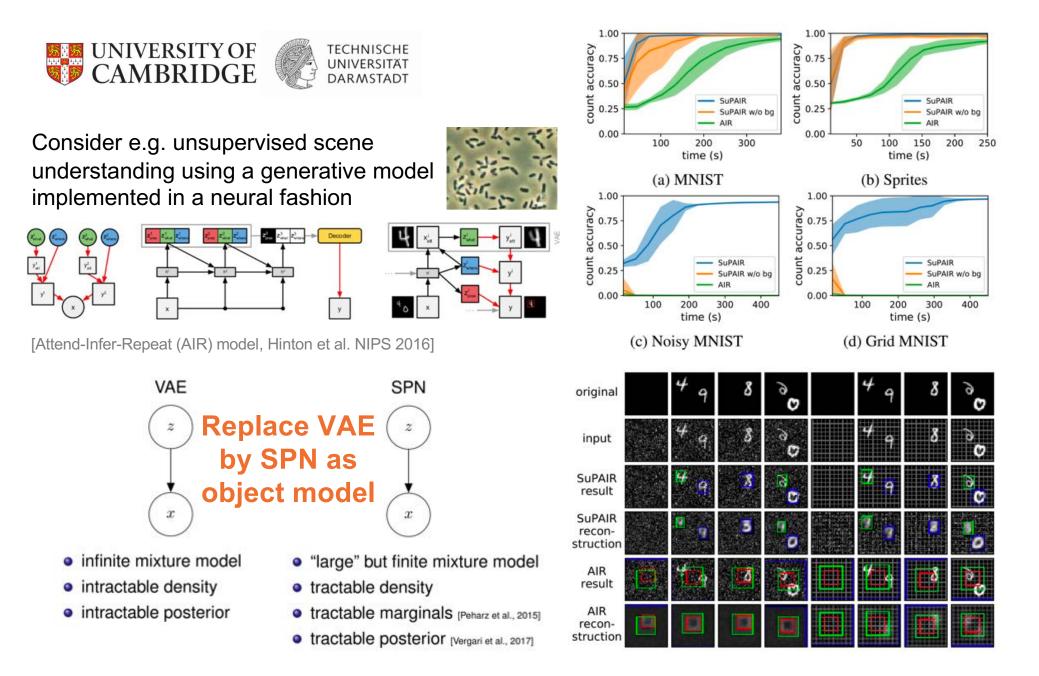


Sum-Product Network

(1) Instead of optimizating variational parameters for every new data point, use a deep network to predict the posterior given X [Kingma, Welling 2013, Rezende et al. 2014]

Unsupervised scene understanding

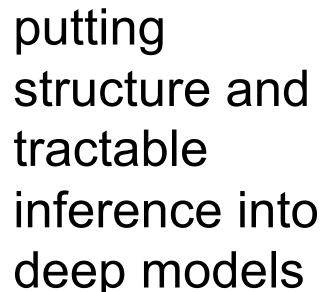
[Stelzner, Peharz, Kersting ICML 2019, Best Paper Award at TPM@ICML2019] https://github.com/stelzner/supair

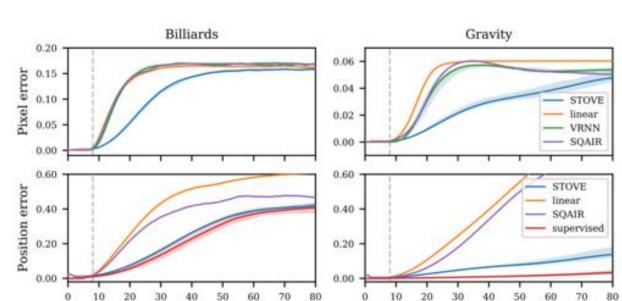


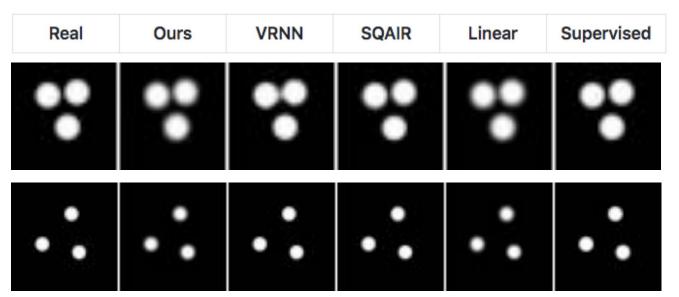
Unsupervised physics learning

[Kossen, Stelzner, Hussing, Voelcker, Kersting ICLR 2020]

 x_t







There are strong invests into (deep) probabilistic programming

UBER AI Labs

RelationalAI, Apple, Microsoft and Uber are investing hundreds of millions of US dollars

relationalAI Al for the enterprise

Since we need languages for Systems AI,

the computational and mathematical modeling of complex AI systems.

[Kordjamshidi, Roth, Kersting: "Systems AI: A Declarative Learning Based Programming Perspective." IJCAI-ECAI 2018] as well as the work of Chris Re

Eric Schmidt, Executive Chairman, Alphabet Inc.: Just Say "Yes", Stanford Graduate School of Business, May 2, 2017.https://www.youtube.com/watch?v=vbb-AjiXyh0.

This was also the topic of the recent Al Debate

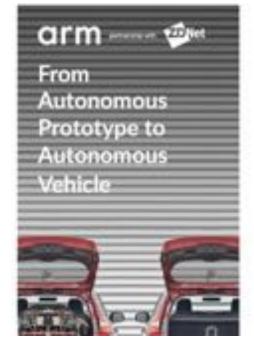
Devil's in the details in Historic AI debate

An historic debate between two of the artificial intelligence illuminati was mostly simpatico on the big questions -creating hybrid systems of AI, finding the right 'priors' for knowledge -- but it was also punctuated by sharp differences on some of the details.

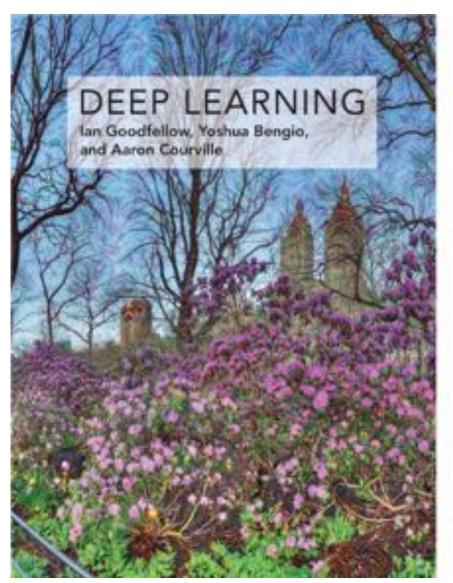
By Terman Roy (December Ju, 2010 - 1313 GMT (1313 GMT)) Topic: Antifold Intelligence

Gary Marcus

Yoshua Bengio

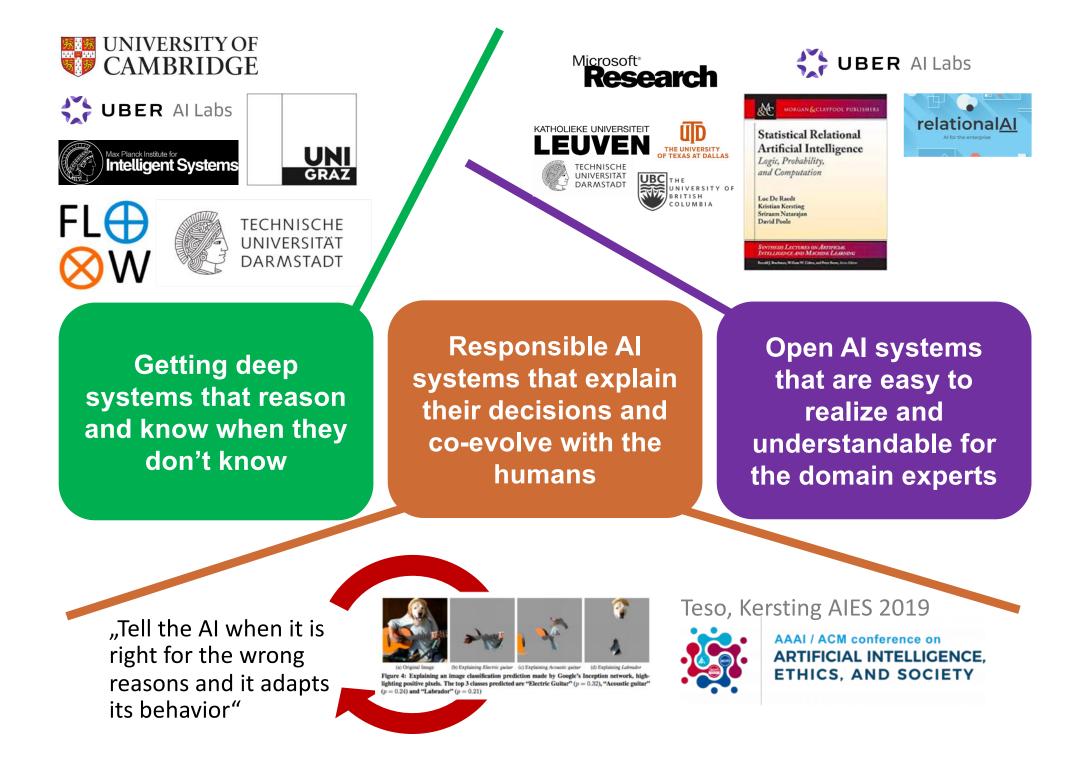


This was also the topic of the recent Al Debate



FROM SYSTEM 1 DEEP LEARNING TO SYSTEM 2 DEEP LEARNING YOSHUA BENGIO

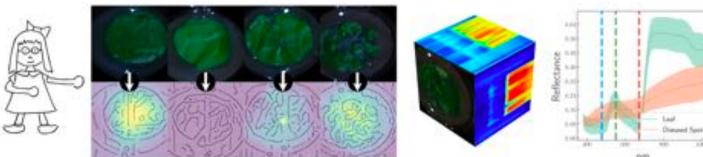
NeurIPS'2019 Keynote December 11th, 2019, Vancouver BC

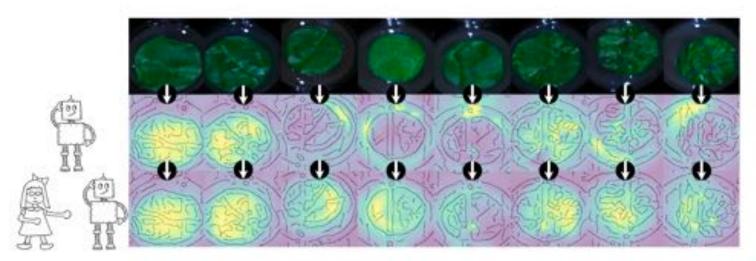


Making Clever Hans Clever

Co-adaptive ML:

- human is changing computer behavior
- human adapts his or her data and goals in response to what is learned





AAAI / ACM conference on ARTIFICIAL INTELLIGENCE, ETHICS, AND SOCIETY [Teso, Kersting AIES 2019, Schramowski, Stammer, Kersting at al. 2020 almost ready for submission]

Indeed, AI has great impact, but ...

- + Al is more than deep neural networks.
 Probabilistic (and causal) models are whiteboxes that provide insights into applications
- + Al is more than a single table. Loops, graphs, different data types, relational DBs, ... are central to ML/AI and high-level programming languages for ML/AI help to capture this complexity and makes using ML/AI simpler
- + Al is more than just Machine Learners and Statisticians, Al is a team sport

The Third Wave of AI requires integrative CS, from SoftEng and DBMS, over ML and AI, to computational CogSci

Still a lot to be done!

Ilustration Nanina Föhr