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Today’s Objectives

Make you understand how to use kernels for regression both
from a frequentist and Bayesian point of view

Covered Topics
Why kernel methods?

Radial basis function networks
What is a kernel?
Dual representation

Gaussian Process Regression
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Outline

1. Kernel Methods for Regression

2. Gaussian Processes Regression

3. Bayesian Learning and Hyperparameters

4. Wrap-Up
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1. Kernel Methods for Regression
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Why Kernels and not Neural Networks?

Multi-Layer Perceptrons use univariate projections to “span” the
space of the data (like an “octopus”)

y=g(w'x)




1. Kernel Methods for Regression

Why Kernels and not Neural Networks?
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m Pros a,
m Universal function 3]
approximation ]

= Large range
generalization
(extrapolation)

= Good for high
dimensional data

m Cons :
= Hard to train x

m Danger of interference
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Radial Basis Function Networks

m Use spatially v=glr~2) v=g0n—2)+g(-x, ~2)
localized
kernels for
learning

= Note: there are
other basis
functions that
are not spatially
localized

y=pln =2+ gl-x = +pln =D+ pl—3 =21 y=pln-D+al-x-D+ply - D+ pl-y-2-3
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Radial Basis Function Networks

m For instance with Gaussian kernels
3= S wolln-x) = w s -x,)

Radial Basis Function
Network

bias 1s
mecluded
in hidden
layer!

606 = (=3 (=)D (-

with D positive definite
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Radial Basis Function Networks

The “output layer” is just a linear regression

Often needs regularization (e.g., ridge regression)

J= 2ty (E-y) = 5 (¢~ w)T (¢ — W)
Al P11 P12 ... Pim
¢ — t.z - o211 22 .. Dam
t.n ¢n1 (an e ¢nm

w=(D7P) Pt
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Radial Basis Function Networks

The “input layer” can be optimized by gradient descent with
respect to distance metric and centers of RBFs

Do (N e (2 RO W
e T g ) T T G, oo, T Tap, ) T T 5,
9 8 (e TDix— 92 9 (YT _
6Ck7&kep( S (=)D~ g)) apk*ank”( S )T D (x— )
1 1
e (3 (- @)D 6)) (x - )T —exp (=3 (= 60T D (x— ) ) (x = <o)

(x — )

Gradient descent can make D non positive definite = use
Cholesky Decomposition

An iterative procedure is needed to for optimization, i.e.,
alternate update of w and update of ¢, and Dy
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Radial Basis Function Networks

m Sensitivity to kernel width (bandwidth, dist. metric) of
o (x,ck) = exp (—% (x —c)? h)

2 1

Il
1 r'n I ”
IV U
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Radial Basis Function Networks

m Sensitivity to number of kernels and metric of
6(xc) =exp (= (x— )’ h)
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Radial Basis Function Networks

m Benefits of center and metric adaptation

1
No Center No Adaptation:
Adaptation: ¢ MSE=0022
MSE=0022

2 - - Distance Metric
With C 1 / \‘* /t"’ Adaptation:

ith Center /
Adaptation: §o MSE=0.0001
MSE=001
2
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Radial Basis Function Networks
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= All adaptations turned on

= Note: RBF tend to grow wider with a lot of overlap, and learning
rates are sensitive

2 I\ *
Distance Metric f 1 =~
and Center T /% *ﬁ,ff
Adaptation: !
MSE=0.00001 I f
e
1t e
/')'r
o
Y0 0%
KN AN
- - e 7/_/7__\.,/7:‘__\ .z N )
3 1 0 1 2
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Radial Basis Function Networks - Summary

m RBFs are a powerful and efficient learning tool

= Number of RBFs and hyperparameter optimization is important
and a bit difficult to tune

m Theoretical remark

m Poggio and Girosi (1990) showed that RBF networks arise
naturally from minimizing the penalized cost function

J= ;2 -y )+ 37 [ 1600 ax

2
with, e.g., G (x) = %, a smoothless prior
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Kernel Methods in General

What is a kernel?

Most intuitive approach for a fixed nonlinear feature space: an
inner product of feature vectors

k(x,x) =¢(x)T ¢ (x)

A kernel is symmetric

k(x,x") =k (x',x)

Examples
Stationary kernels: k (x,x’) = k (x — x’)

Linear kernel: k (x,x") = x7Tx’

Homogeneous kernels: k (x,x’) = k (||[x — x'||)
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Dual Representation of Linear Regression

The dual representation gives natural rise to the kernel functions

1 ;A
J(w) = 5 (W' (xn) —tn)” + inw, where A > 0
=1
ol N
)3 W16 () — 1) () + A = O

1

>
Il

3

I
i
M=

(W7o (Xn) — ta) ¢ Zanqﬁ X;) = PTa

Il
N

n
where & = [¢ (x1)T... ¢ (xy)T] € RN¥D
Thus, w is a linear combination of ¢ (x,)

The dual representation focuses on solving for a, and not w



Dual Representation of Linear Regression

Insert the dual representation into the cost function
1< A
_ 72 : T N2 AT

1 < T 2 A raaT
l(a):EZ(a @) (%) —tn)" + Sa'PP'a

n=1
1< 1< A A
=3 Z a'do (xn) ¢ (x)" a+ 5 Z 2 — Z a'do (xn) tn + iaqu@Ta
n=1 n=1 n=1
— o eeTasTat et - aTaoTt 1 2addTa
2 \( 2 2
= %aTKKa + %t‘t — a'Kt + %aTKa

K = &7 is the Gram Matrix, and K = ¢ (x;)7 ¢ (x;) = k (x;, X))
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Dual Representation of Linear Regression

Solve the dual problem for a

1 1 A
J(a) = Za"KKa + ittt —a'Kt + jaTKa

2
8{9(:) = KKa — Kt + \Ka = K (Ka —t + \a) =0
a=(K+ )t

Side note: since by definition of a kernel matrix, K is Positive
Semi-Definite, K1 exists
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Dual Representation of Linear Regression

m Compute the prediction as
y (x) = wTo (x) = aTdp (x) = k()T (K + M) 't
where k (x) = [k (%, x1) ... k (x,xy)]"

m All computations can be expressed in terms of the kernel
function k
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Pros and Cons of the Dual Representation

Cons
Need to invert a N x N matrix

Pros
Can work entirely in feature space with the help of kernels

Can even consider infinite feature spaces, as the kernel function
does only have the inner product of feature vectors, which is a
scalar, even for infinite feature spaces

Many novel algorithms can be derived from the dual
representation

Many old problems of RBFs (how many kernels, which metric,
which centers) can be solved in a principled way
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Some Useful Kernels

Polynomial kernels
E.g., 2nd order: k(x,z) = (x7z)?

N-th order with offset: k(x,z) = (xTz + ¢)N

Gaussian Kernel (also called Radial Basis Function - RBF)

1
k (x,x") = exp <_M [ x —X/H2>

Arises from a feature space with an INFINITE number of radial
basis functions

+oo 1 2 1. A
[m exp (MXX/ )exp <M”XX/” >dx

x exp 1 Ix —x'||”
202
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2. Gaussian Processes Regression
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Dual Representation of Linear Regression

Classical linear (ridge/regularized) regression

y(x) =wT¢(x)
w= (DTS +\) BTt
t=y+e e~N(0N)
Dual representation of linear regression
y(x) = a'k(x)
a=(K+x)'t
k(x)=[ k(x,x1) ... k(xX) |
k (xi, %) = ¢ ()T & (x;)
t=y+e e~N(0N)



2. Gaussian Processes Regression

Bayesian Linear Regression Revisited

m Regression model
y(x) = wTo(x)

m Parameter Distribution
p(w) =N (w ’ 0, oz_ll)

m Thus, for any w, one particular function of x is defined

m The distribution over w thus induces a distribution over functions

m Goal: evaluate the function at some values of x, e.g., the training
set Xq,...,Xp
y = dw

and predict the joint probability p(y1,...,¥n)
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Bayesian Linear Regression Revisited

y=aw  p(w) :N(w)o,orll)

m y is a linear combination of Gaussian random variables, and thus
Gaussian itself

m To obtain the joint distribution of all y, we only need the mean
and covariance

E{y}=E{®dw} =PE{w} =0
cov{y} =E{yy"} = PE{wwT} &7 = %@@T =K

where Kjj = k (x;, x;) = %(ﬁ(xi)T ¢ (x;)
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Gaussian Processes

m A Gaussian Process (GP) is a probability distribution over
functions y(x), such that any finite set of function values y(x)
evaluated at inputs x4, ..., X, is jointly Gaussian distributed

m A Gaussian Process over n variables yq, ..., ¥, is completely
specified by the 2nd order statistics, i.e., mean and covariance

m Rasmussen and Williams, 2006, Gaussian
Processes for Machine Learning (http:
//www.gaussianprocess.org/gpml/)

m Good introduction to GPs by Carl Rasmussen:
http://videolectures.net/
mlss@9uk_rasmussen_gp/
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Gaussian Processes

A GP is fully specified by a mean function and a covariance
function (kernel)

Prior mean function: expected function before observing any data

Covariance function: encodes some structural assumptions (e.g.,
smoothness) (e.g., multivariate Gaussian kernel)

Most applications assume the prior mean of y to be zero
Corresponds to a mean-zero prior of w

Thus, a GP is completely defined by

E{y} =E{®dw} =PE{w} =0
E{y )y () } = k (i, )
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GPs - Different Covariance Functions
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3
L5
0
-15
-3
-1 -05 0 05 1
1
) = op (=55 [ =) k) = exp (=0 =)
Gaussian/RBF Kernel Ornstein-Uhlenbeck Process

(Brownian Motion)
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GPs for Regression

Generative model: t, = y (xp) + €

Noise model: p(t, | yn) = N (tn

Ymﬁfl)

Prior distribution over function values: p (y) = N (y ) 0, K)

The kernel function that determines K is typically chosen to
express the property that, for similar points x, and x,, the
corresponding values y(x,) and y(x5) will be more strongly
correlated than for dissimilar points. The definition of similarity
depends on the application
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GPs for Regression - Sampling Example

3 m Illustration of the sampling of
data points t, from a GP. The
blue curve shows a sample

/"*\ function y from the GP
3 posterior over functions. The
0 mj\/ red points show the values of
y» obtained by evaluating the

function at a set of input
values x,. The corresponding
values of t,, shown in green,
= 5 \ are obtained by adding
independent Gaussian noise to
each of the y,
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Inferring Functions with GPs

m Prior over functions (GP): p (y)
m Likelihood (measurement/noise model): p (t | y)

m Posterior over functions via Bayes theorem

_p(ty)p(y)
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GPs Regression - Prediction for New Data Points

Training set

t, = (t1,...,t;)" with corresponding xq, . .., X,
Predict t,, 1 for x,.1

Approach: evaluate the predictive distribution

p (tn+1 Xn+1, tl:naxlzn)

For the derivation, remember that GPs assume that
p(ti,t2,...,tn,the1) is jointly Gaussian

Therefore, the conditional distribution p (t,,+1 Xni1, tl:,,,xlzn) is

also Gaussian distributed



Gaussian Conditioning

Assume x is Gaussian distributed and it can be partitioned in two
disjoint subsets x, and x;,. We can rewrite the distribution in
terms of the mean and covariance matrices of x, and x,,

p(x) =N (x|n,)
Xq Ha Yaa Xab ]
X = s = R 2 =
[Xb] H [Hb] [Eba b
The conditional distribution is also Gaussian

p x| %) = N (¥ g0 S

Halp = Ha + XXy, (Xo — Bb)
Sap = Baa — ZarSpy ba
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Gaussian Conditioning and Marginalization

m With Gaussian distributions the following holds

pix.y) ~ N

=

pixly) ~ N
pylx) ~ N
px) ~ N
py) ~ N
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GPs Regression - Prediction for New Data Points

p(ty1) =N (tn+1 ’ 0, Cn+1>

C, k
Cn+1:<knc>

where
k=1[ k(xi,%11) .. k(Xn,Xps1) |7

€= k(Xpt1,Xn41) + 571
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GPs Regression - Prediction for New Data Points

= Prediction Equations

m(xp+1) = kTCy 't

o2 (Xpp1) = c— kTCA71k

05

=)

=0.5

L~

0 0.2 0.4 0.6 0.8 1

m Example of Sinusoidal Data Set (green: true function; blue: noisy
data; red: GPR predictive mean; shaded: +20)
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GPs Regression - Notes

m Interpretation as RBFs

N
m(Xp41) = kTC,ft = Z ank(Xn, Xn+1)

n=1

= Computational Complexity
= For building the model: O(N?)

= For prediction of one function value: O(N?) (for the variance)

m Key advantage of GPR: non-parametric and probabilistic
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GPs Regression - Notes

Naive methods can deal with ~ 10.000 — 20.000 data points

Advanced methods (e.g., Sparse GPs) for more than 50.000 data
points

IMPORTANT: Hyperparameter optimization (parameters of the
kernel / covariance function). E.g., for squared-exponential
kernel

1
k (X,',Xj) = O'jg exp <—212 (X,' —Xj)2> + U,%(S,‘j

where af is the signal variance, [ is the length-scale and o7 is
the noise variance
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GPs - Summary

GPs are a Bayesian approach to regression with possibly infinite
feature spaces

Resulting prediction equations are very straightforward and
obtained in closed-form because of the Gaussian properties

Hyperparameter optimization more complex and expensive

While GP for Regression is computationally very expensive, it is
one of the most principled approaches to statistical learning for
regression
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Outline

3. Bayesian Learning and Hyperparameters
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Bayesian Learning - Pros

Bayesian methods are a superset of many learning methods
Regularization is a natural consequence

No need for splitting into training and test sets

Confidence intervals and error bars can be obtained
Regularization can be obtained automatically

Model comparison

Active learning (determine where to sample next)
Automatic relevance detection (which inputs are important)
Black-box learning approaches

Theoretically among the most powerful method
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Bayesian Learning - Cons

Requires to choose prior distributions, mostly based on analytical
convenience rather than real knowledge about the problem

Computationally intractable
Posterior probabilities involve the computation of an integral

(01— PADPO) _p0)p©) _ p(0)p(9)
POTY=""000 = Te(x.0)d0 ~ [p(x]0)p(0)do

On the contrary, in non-Bayesian statistics we estimate
parameters with maximum likelihood estimation. MLE is usually
easier because it involves finding the maximum of the likelihood
function, for which you can still use gradient descent, if there is
no analytical solution
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Bayesian Learning - Key Issues

All parameters are treated probabilistically, i.e., avoid “point
estimates”

The probabilistic treatment allows integrating out all unknown
parameters

The problem of infinite regress?



Bayesian Learning - Key Issues

Quantities of most interest in Bayesian approaches
Model Evidence

p(O) = [p@.0)s0 = [p(0|0)p(5)at

Posterior of parameters

p(D16)p ()

pio10) =P

Predictive distribution

p(X\D):/p<x,9‘9)d9
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The Philosophy of Bayesian Model Selection

Due to probability measure, models can be compared using the
evidence
Complex models have lower probability density over large
range of data sets

Simple models have high probability density over a small
range of data sets

Thus, there should be a compromise in terms of complexity
and confidence in the model

gy - M el
50 (D] M) p (M) v’

p (Mi

Dy
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Why the Evidence Achieves Regularization

Awpcaterior
i

WMAP w

A Wprior

m Approximate evidence in a one parameter scenario

Aw, I
p0)= [ p(01w)p(w)dw = p (D] wne) =goe5terer

AWprior
Aw, ;
Inp (D) ~np (O] wyp) +1n (Jﬁ)
prior

= Note that the 2nd term penalizes the model complexity
according to how finely the posterior is tuned
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Why the Evidence Achieves Regularization

m For M parameters

Aw, ;
900~ np (o] mr) i (2
prior

m The penalty increases with the number of parameters
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Bayesian Learning

m Parameters are modeled by probability distributions

m The conditional distribution of a new data point x given the
training data D can be written as the marginalized joint
distribution

p(x\D)—/p(x,w\D)dw—/p(xw,w)p(ww)dw
— [pixIw)p(w| 0)cw

m Hence the Bayesian approach performs a weighted average over
all values of w
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Bayesian Learning

Connection to maximum likelihood estimation
p(x|D)= [ p(x|w.0)p(w|D)dw

zp(x]vAv,D)/p(W]D)dw

———
=1

=p(x|w,D)

The approximation usually holds for sufficiently many training
data points
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Bayesian Learning

= How to perform Bayesian Updates

p(w|D)= p(D”(VD))p(W p((g)]_[p(

0= [p(w

= To obtain predictions, one has to evaluate the integrals
N
p(D) = /p(w') Hp (x" w’) dw
n=1

p(10)= [ (x| w)p(w|D)dw

m Generally this is a very complex computation

w’) dw’

m Analytical solutions exist only if the posterior has the same
parametric form as the prior (conjugate priors, reproducing
densities)
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Example - Bayesian Density Estimation with a
Gaussian

Determine the mean of the Gaussian by Bayesian Learning

Prior: po (i) = ! exp (—W)

\/ 27['0'(2) 20,

2
Gaussian model: p (x | p) = \/2172 exp <_ (XZ—JQL) )
ViYea

Pl | X ‘;"(,‘;)Hp

We get a Gaussian posterior with parameters

NoZ  _ o 1 N 1 - 1.,
= X+ s — = — + —, X = — X
HN Naé + o2 Naé + o2 Ho UIZV o? 0(2) Z
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Example - Bayesian Density Estimation witha = >
Gaussian

m Evolution of the posterior probability of the mean (blue) with
increasing number of data points (red)

12 -
12

a

a

'
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Bayesian Learning

Assume probability distribution over network weights and some
prior
Need to interpret outputs probabilistically

Bayesian Learning Procedure

Start with prior distribution p(w) and choose appropriate
parameters (usually broad distribution to reflect uncertainty)

Observe data, compute posterior of parameters with Bayes rule

Continue updating if more data comes in, replacing the prior with
the posterior

In order to make a prediction, the expectation given the posterior
distribution has to be found (might be very complex)



TECHNISCHE
UNIVERSITAT
DARMSTADT

Gaussian Priors

As usual, Gaussian priors are most convenient to deal with (for
real numbers), although they may be unrealistic

I S G s
po(w) = Tméep< 202 )

More generally ...

1
p (W) = Z (CZ) exp (_aEW)
where
w/2
Zy () = /exp(faEW) dw = (ZI)
a
1< 1 1
_ 1 . 2 _ o 2 _ = 2 P 2
EW - 2 ||W WOH 2 ; (W’ Wo ’) ) EW 2 ||W|| 2 ;W/

« is a hyperparameter
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Example - Logistic Regression

® v
po (W) n
£\® o 10)= 22 o€ 1w

(o]
Prior: p (W) = exp (-% kuz) / (f) "

Likelihood: p <t”

W) =y xw) = 1+ exp (—wTx)

p(m—/y(x,w)p(w)dw

Note: p(D) is difficult to estimate, but we do not need it as long
as we do not attempt model comparison, since it is only a
scaling factor
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Example - Logistic Regression

m Consider the data set

5 5 1
5 s 0
X=1 9o 1] T=]o
1 0 1

a=0.1 a=0.01
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Example - Logistic Regression

m Use all data points

%

i
s i
5 3

0.1 LG .?;& X

!
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Gaussian Noise Models

Make Gaussian Assumption for Likelihood

B 1
 Zp(B)

where Zp () = /exp(—BED)

p(D|w)

exp (_6ED)

For instance, for regression assume

p (t‘x, w) X exp (—iﬁ(y(x, w) — t)2>



Gaussian Noise Models

Posterior Distributions of Weights

Since all distributions are Gaussian, the posterior must be
Gaussian and can be written as

p(w| D) = 7 exp (~50 — o) = 5 exp (S (W)

where Zp (a, ) = /exp(—ﬁED — aEy)dw

What is the parameter vector maximizing the posterior? This can
be achieved by minimizing

BN o
2; xw—t” 5;



Gaussian Approximation of Posterior
Distribution

Assume that there is an analytically intractable distribution
E.g., after obtaining the posterior of the parameters, the
likelihood of the model may be desirable

p10)= [p(y|w)p(w|D)aw
E.g., the posterior is required in Gaussian form

Way out: e.g., approximate the intractable distribution with a
Gaussian
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Laplace Approximation

Assume the generic probability distribution

p(z):%f(z), Wich:/f(z)dz

Goal: Approximate p (z) with a Gaussian distribution, centered at
the mode z;
df (2)

dz

z=2Zy

We get a 2nd order Taylor series expansion

2
Inf (2) ~ Inf (20) ~ 3 (—jzz Inf (2)

B ) (z—2)’



Laplace Approximation

Taking the exp we get
f(2) =~ f(20) exp (—%A (z— Zo)2>

a(2) ~ (ZAW)/ e (34~ 20)

For the multivariate case
Inf (2) ~ Inf (z0) — 3 (2~ 20) Az~ 20)

A=—VVinf(2)

z=2j

F@)~fE)en (<3 -z A )

1/2
q(2) ~ ((;:)M> exp (—%(z—zo)TA(z—zo)> :N(z‘zo,A_l)
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Laplace Approximation

m |llustration for approximation of logistic regression
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Dealing with Hyperparameters

Augment Framework to also model the hyperparameters
probabilistically

pwi0)= [ [ p(w.a.5]D) dads
= [ [ p(w|a.5.0)p (o5 D) das

Assuming a sharp peak of the distributions of the hyperparameters

p(w\D)zp(w\D,aMp,ﬁMp)//p(m,@\o) dads = p (w| D, cwp, e

These assumptions offer the possibility to first find the
hyperparameters that maximize the posterior, and then perform the
remaining calculations with these optimized hyperparameters

Note that there are also other methods to obtain the
hyperparameters



Hyperparameters in Gaussian Processes

What are the hyperparameters in GPs?
E.g, exponential-quadratic kernel

k (Xn, Xm) = 0o exp (—% 1%7 — xm\|2> + 0 + 03x] Xm
Approach: optimize the evidence w.r.t. the hyperparameters

p@©) = [pleln)pmdy = (¢
with C (Xo, Xn) = k (X0, Xm) + B 0om

0, c)

E.g., by gradient descent

oG, 0
00;

et

F) R ST W B
6, logp(t]0) = 2Tr(C,7 >—|—2t C,
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Hyperparameters - Summary

Bayesian learning offers an automatic way of regularization and
meta-parameter tuning

The evidence framework for model selection offers a principled
tool to compare different learning systems

Most of the time, Bayesian learning is analytically intractable

Approximation methods exist to deal with the intractable
components (Bayesian “hacking”)
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4. Wrap-Up

You know now:

What RBF Networks are

What Kernels are, how to construct them and why they are
beneficial

How to derive the dual formulation of linear regression, and what
are its pros and cons

What GPs are, and the assumptions behind them

With GPs we can predict the value for a new point in closed form,
because of the Gaussian conditionals

Doing regression with GPs we get a mean value and a variance
(uncertainty) of the estimate

Generally methods with kernels do not scale well with data

The ideas behind Bayesian Learning, its pros and cons



Self-Test Questions

Why kernel methods for regression?
How do you get from radial basis functions to kernels?
What is the role of the two pseudo-inverses in kernel regression?

Why are kernel regression methods very computationally
expensive?

Why is kernel regression the dual to linear regression?
What is the major advantage of GPs over Kernel Ridge Regression?
Why are GPs a Bayesian approach?

What principle allowed deriving GPs from a Bayesian regression
point of view?

How to get the hyperparameters in a Bayesian setup?



4. Wrap-Up

Extra Material & Homework

m Extra material

m Goertler, et al., "A Visual Exploration of Gaussian Processes’,
Distill, 2019 (https://distill.pub/2019/
visual-exploration-gaussian-processes/)

= Reading Assignment for next lecture
m Bishop 8
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