
Statistical Machine Learning
Lecture 12: Neural Networks

Kristian Kersting
TU Darmstadt

Summer Term 2020

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 1 / 109

Today’s Objectives

Learn about Neural Networks

Covered Topics
Learning representations

Single layer Perceptrons

Multilayer Perceptrons (MLPs)

Forward & Backpropagation

Efficient and Effective Gradient Descent

Theoretical Results

Applications

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 2 / 109

Outline

1. Learning Representations and the Shift to Neural Networks
2. Single-Layer Neural Networks
3. Multi-Layer Neural Networks
4. Output Neurons and Activation Functions
5. Forward and Backpropagation
6. Gradient Descent
7. Overfitting
8. Theoretical Results
9. Other Network Architectures
10. Examples
11. Wrap-Up

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 3 / 109

1. Learning Representations and the Shift to Neural Networks

Outline

1. Learning Representations and the Shift to Neural Networks
2. Single-Layer Neural Networks
3. Multi-Layer Neural Networks
4. Output Neurons and Activation Functions
5. Forward and Backpropagation
6. Gradient Descent
7. Overfitting
8. Theoretical Results
9. Other Network Architectures
10. Examples
11. Wrap-Up

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 4 / 109

1. Learning Representations and the Shift to Neural Networks

Learning Representations

Up until now we had to come up with good features to solve our
learning problems

For instance, in character image classification the features could
be the number of grey pixels

Feature selection is a laborious task. It is hard to choose the
right features
Try adding these two numbers in binary ...

0101101+ 1000001

. . . and now as decimals
45+ 65

Representation of your data matters

Neural Networks learn complex data representations by
combination of simpler ones

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 5 / 109

1. Learning Representations and the Shift to Neural Networks

The Shift to Neural Networks

The Big Shifts that lead to the current state of Neural Networks
Too little data⇒ Too much data

Linear and Convex⇒ Nonlinear and Nonconvex

Features intuitively obtainable (manually, automatic, indirectly
via kernel)⇒ harder to obtain, key focus of learning

Optimization becomes easier by being deep (Whoops, did you see
that coming?)

“Right number of parameters”⇒ “always too many”

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 6 / 109

1. Learning Representations and the Shift to Neural Networks

Neural Network History on One Slide

Precomputational (1888-): Neuron in Biology
fully isolated by Ramon y Cajal...
Field Starts (1943-): McCullogh&Pitts Neuron and Networks
1st Hype (1957-): Rosenblatt’s Perceptron
1st Winter (1969-): Papert/Minsky book perceptron with XOR
example
2nd Hype (1986-1994): Rummelthart/Hinton/Williams rediscover
Backpropagation

2nd Winter (1994-): Optimization is really hard, Kernels are
better!
2007: Rebooted by NIPS Workshop...

3rd Hype (2013-now): Amazing results in Computer Vision
(ImageNet), Natural Language Processing, (Deep) Reinforcement
Learning, ...

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 7 / 109

Santiago Ramón y Cajal
(1852-1934)
Waren McCulloch (1898-1969)
Walter Pitts (1923-1969)
Frank Rosenblatt (1928-1971)Marvin Minsky (1927-2016)
Seymour Papert (1928-2016)
David E. Rumelhart
(1942-2011)
Geoffrey E. Hinton (1947-)
Ronald J. Williams (??-)

Geoffrey E. Hinton (1947-)
Yann LeCun (1960-)
Juergen Schmidhuber (1963-)

1. Learning Representations and the Shift to Neural Networks

Neuron

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 8 / 109

1. Learning Representations and the Shift to Neural Networks

Neuron

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 9 / 109

1. Learning Representations and the Shift to Neural Networks

Neuron

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 10 / 109

1. Learning Representations and the Shift to Neural Networks

Biological Abstraction of a Neuron

Abstract neuron model

y = f
(∑n

i=1wixi + w0
)

= f (wᵀx+ w0) = f (wᵀ
: x:)

with
Input x: = [xᵀ, 1]ᵀ

Parameters/weights w: = [wᵀ,w0]ᵀ

Bias/offset/threshold w0

Activation function f

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 11 / 109

1. Learning Representations and the Shift to Neural Networks

Biological Neural Network

Cerebellum

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 12 / 109

1. Learning Representations and the Shift to Neural Networks

Biological Neural Network

Cerebrum

I. Molecular Layer, II. External Granular Layer, III. External Pyramidal
Layer, IV. Internal Granular Layer, V. Internal Pyramidal Layer, VI.
Multiform Layer

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 13 / 109

1. Learning Representations and the Shift to Neural Networks

Biological Abstraction of a Neural Network

Neural networks in the brains are often determined by the
sheets of tissue

Sheets = Vectors of Neurons

For simplicity in synthesis and analysis

We pool neurons together in “layers” of m inputs and n outputs,
where each layer has

Weight matrix W ∈ Rn×m

Bias vector w0 ∈ Rn×1

Input vector x ∈ Rm×1

Pre-activation vector
z = Wx+ w0 = [W,w0][xᵀ, 1]ᵀ = W:[xᵀ, 1]ᵀ ∈ Rn×1

Output vector y = f(z), with f : Rn×1 → Rn×1

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 14 / 109

2. Single-Layer Neural Networks

Outline

1. Learning Representations and the Shift to Neural Networks
2. Single-Layer Neural Networks
3. Multi-Layer Neural Networks
4. Output Neurons and Activation Functions
5. Forward and Backpropagation
6. Gradient Descent
7. Overfitting
8. Theoretical Results
9. Other Network Architectures
10. Examples
11. Wrap-Up

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 15 / 109

2. Single-Layer Neural Networks

Reminder of Logistic Regression Classifier

Model the class-posteriors as

p (C1 | x) = σ (wᵀx+ w0)

Maximize the likelihood

p
(
Y
∣∣∣X;w,w0

)
=

N∏
i=1

p
(
yi
∣∣∣ xi;w,w0)

=
N∏
i=1

p
(
C1
∣∣∣ xi;w,w0)1−yi p(C2 ∣∣∣ xi;w,w0)yi

=
N∏
i=1

σ (wᵀxi + w0)1−yi (1− σ (wᵀxi + w0))yi

where yi = {1, xi belongs to C2; 0, xi belongs to C1}

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 16 / 109

2. Single-Layer Neural Networks

Logistic Regression Classifier as a Neural
Network

Single-Layer Network (without an hidden layer)

where x is the input layer, w are the weights and y (x) is the
output layer (here a single node)

Linear output (linear regression function)

y (x) = wᵀx+ w0 =
d∑
i=1

wixi + w0

Logistic output (classification)

y (x) = σ (wᵀx+ w0)
K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 17 / 109

2. Single-Layer Neural Networks

Multi-Class Network

Single-Layer Network with Multiple Outputs

Multidimensional linear regression - linear output

yk (x) =
d∑
i=1

Wkixi

Multi-class linear classification. Nonlinear extension is
straightforward - logistic output

yk (x) = σ

(
d∑
i=1

Wkixi

)
K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 18 / 109

2. Single-Layer Neural Networks

The Least-Squares Loss Function

In a supervised setting we have
N training data points X =

[
x1, . . . , xN

]
For each data point there are c possible target values,
k ∈ 1, . . . , c, Tk =

[
t1k , . . . , t

N
k

]
With our model we can compute yk (xn;W)

Least-squares error function

E (W) =
1
2

N∑
n=1

c∑
k=1

(yk (xn;W)− tnk)2

=
1
2

N∑
n=1

c∑
k=1

(
f

(
d∑
i=1

Wkiφi (xn)

)
− tnk

)2
where φi (.) are arbitrary feature transformations

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 19 / 109

2. Single-Layer Neural Networks

Learn the Weights with Gradient Descent

Assume the output with a linear activation, i.e.,
yk (xn) =

∑d
i=1Wkiφi (x

n)

E (W) =
N∑
n=1

1
2

c∑
k=1

(
d∑
i=1

Wkiφi
(
xn
)
− tnk

)2
=

N∑
n=1

En (W)

∂En (W)

∂Wlj
=

(
d∑
i=1

Wliφi
(
xn
)
− tnl

)
φj
(
xn
)
=
(
yl
(
xn
)
− tnl

)
φj
(
xn
)

Update the weights with gradient descent

Wlj ← Wlj − η
∂E (W)

∂Wlj

∣∣∣
W

∂E (W)

∂Wlj
=

N∑
n=1

∂En (W)

∂Wlj

Computationally expensive if we use all the data points for
gradient estimation (shortly we will see how to overcome this)

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 20 / 109

2. Single-Layer Neural Networks

Learn the Weights with Gradient Descent

Assume the output with a possible non-linear activation, i.e.,
yk (xn) = f (ak) = f

(∑d
i=1Wkiφi (x

n)
)

∂En (W)

∂Wlj
= f ′ (al) (yl (xn)− tnl)φj (xn)

In a logistic neural network

f (a) = σ (a)

σ′ (a) = σ (a) (1− σ (a))

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 21 / 109

2. Single-Layer Neural Networks

Neural Networks

NNs can be adapted to regression or classification
If we use a linear output node, we get a linear regression function

If we use a sigmoid output node, we get something similar to
logistic regression

In either case, a classification can be obtained by taking the sign
function

Nonetheless, at least classically, we don’t use maximum
likelihood, but a different learning criterion

The actual power of NNs comes from extensions
Multi-class case

Multi-layer perceptron

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 22 / 109

3. Multi-Layer Neural Networks

Outline

1. Learning Representations and the Shift to Neural Networks
2. Single-Layer Neural Networks
3. Multi-Layer Neural Networks
4. Output Neurons and Activation Functions
5. Forward and Backpropagation
6. Gradient Descent
7. Overfitting
8. Theoretical Results
9. Other Network Architectures
10. Examples
11. Wrap-Up

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 23 / 109

3. Multi-Layer Neural Networks

Multi-Layer Perceptron

Multi-Layer Network with Multiple Outputs

where x is the input layer, z is the hidden layer activation and y
is the output layer

yk (x) = f (2)


h∑
i=0

W (2)
ki f

(1)

 d∑
j=0

W (1)
ij xj


︸ ︷︷ ︸

zi


K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 24 / 109

3. Multi-Layer Neural Networks

Multi-Layer Perceptron

yk (x) = f (2)
 h∑

i=0

W (2)
ki f

(1)

 d∑
j=0

W (1)
ij xj


f (k) are activation functions, for instance

f (1) (a) = σ (a) , f (2) (a) = a

The hidden layer can have an arbitrary number of nodes h

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 25 / 109

3. Multi-Layer Neural Networks

Multi-Layer Perceptron

There can also be multiple hidden layers with different sizes and
activation functions =⇒ Multi-Layer Perceptron

yk (x) =

= f (N)

 hN−1∑
iN−1=0

W(N)
kiN−1

f (N−1)

 hN−2∑
iN−2=0

W(N−1)
iN−1 iN−2

f (N−2)

. . . f (2)
 h1∑
i1=0

W(2)
i2 i1

f (1)

 d∑
i0=0

W(1)
i1 i0

xi0







[Michael Nielsen, neuralnetworksanddeeplearning.com]

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 26 / 109

3. Multi-Layer Neural Networks

Neural Networks Build Stacks of Features

We can see a Multi-Layer network as a stack that builds features
on top of features

yk (x)= f (N)
{ hN−1∑
iN−1=0

W(N)
kiN−1

φ
N−1
iN−1︷ ︸︸ ︷

f (N−1)
(hN−2∑
iN−2=0

W(N−1)
iN−1 iN−2

f (N−2)
(
. . . f (2)

(h1∑
i1=0

W(2)
i2 i1

φ1i1︷ ︸︸ ︷
f (1)
(d∑
i0=0

W(1)
i1 i0

xi0︸︷︷︸
φ0i0

)))

︸ ︷︷ ︸
φ
N−2
iN−2

)}

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 27 / 109

3. Multi-Layer Neural Networks

Universal Function Approximation - One
Hidden Layer is Enough

Universal Function Approximation Theorem
One hidden layer can represent every function arbitrarily
accurate (Cybenko/Hornik)

Even though true, we would need an exponential number of units.
Instead, multiple layers allow for a similar effect with less units

#regions = O

((
n
d

)d(l−1)
nd
)

with


n Number of neurons per layer
l Number of hidden layers
d Number of inputs

Exponential growth in regions
d = 1 l = 1 l = 2 . . . l = k

Regions O(n) O(n2) . . . O(nk)
Kurt Hornik et. al., “Multilayer feedforward networks are universal approximators”, 1989
G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals and Systems, 2(4):303-314, 1989.
Guido Montufar et.al., “On the Number of Linear Regions of Deep Neural Networks”, 2014

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 28 / 109

George Cybenko (??)
Kurt Hornik (1963-)

3. Multi-Layer Neural Networks

Universal Function Approximation Illustrated

-1.0 -0.5 0.0 0.5 1.0
Input x

-0.5

0.0

0.5

1.0

1.5

Ou
tp

ut
 y

Shallow Network: Logistic Neurons

b +
3

i = 1
(mix + bi)

(8 8x)
(8x)
(8 8x)

-1.0 -0.5 0.0 0.5 1.0
Input x

-0.5

0.0

0.5

1.0

1.5

Output y

(1
+

x)

(1
+

2x
)

(
1+

2x
)

y = m1x + b1
= x 0.5

y = (m1 + m2)x
+(b1 + b2) = x + 0.5

y = (m1 + m2 + m3)x
+(b1 + b2 + b3)

= x + 1.5

y = 0.5 (1 + x)+ (1 + 2x)-- (1 + 2x)

Interception
b
m = b3

m3 =

Interception
b
m = b2

m2

Shallow Network: ReLu Neurons

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 29 / 109

3. Multi-Layer Neural Networks

Model Type and Model Class

Model type: Choice of nonlinear parametric model
E.g., y = W3f2(W2f2(W1x))

Determined by
1. Choice of topology: How are the neural layers connected
and how many neurons per layer?

2. Choice of neural elements: How do you model the
neuron?

Little catch: EVERYTHING in ML was at some point called a neural
network...

e.g., f (z) = z is a linear network, RBFs, etc.

Activation function f (z) = φ(z) is just a feature function

Model class: Number of hidden neurons, number of layers
E.g., dim f1(z)

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 30 / 109

3. Multi-Layer Neural Networks

Model Type - Topologies

Feedforward neural network: Acyclic directed graphs, e.g.,
1. Multi-Layered Perceptrons: fully connected

2. Convolutional neural networks: smartly pruned with
weight-sharing

Recurrent neural networks: Cyclic directed graphs with internal
states, e.g., y = f (z), zt+1 = f (x, zt)

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 31 / 109

4. Output Neurons and Activation Functions

Outline

1. Learning Representations and the Shift to Neural Networks
2. Single-Layer Neural Networks
3. Multi-Layer Neural Networks
4. Output Neurons and Activation Functions
5. Forward and Backpropagation
6. Gradient Descent
7. Overfitting
8. Theoretical Results
9. Other Network Architectures
10. Examples
11. Wrap-Up

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 32 / 109

4. Output Neurons and Activation Functions

Output Neurons

Problem class determines the type for the output neurons
Linear for regression

f(z) = z, p(y|z) = N (y|z, σ2I)

E.g. from RL: to model a Gaussian stochastic policy the
outputs can be the mean and the variance

Sigmoid for classification

f (z) = σ(z) ≡ 1
1+ exp(−z)

, p(y|z) = σ(z)y(1− σ(z))1−y

Categorical Distribution/Softmax for multiclass-classification

fi(z) =
exp (zi)∑n
j=1 exp (zj)

≡ p(y = i|z)

All have probabilistic interpretations

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 33 / 109

4. Output Neurons and Activation Functions

Loss Functions

The type of the output neuron is linked to the problem we want
to solve, and so is the loss function

Regression
Linear output neuron⇒ Squared loss

Classification
Linear output⇒ Hinge loss

Sigmoid⇒ Nonlinear log-likelihood

Multi-Class-Classification
Softmax⇒ Nonlinear log-likelihood

All derivable from maximum likelihood

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 34 / 109

4. Output Neurons and Activation Functions

Activation Functions

Sigmoid

f (z) = σ(z)
f ′(z) = σ(z)(1− σ(z))

What is the problem the sigmoid?

The derivative is almost zero everywhere =⇒ zero gradient
during backpropagation

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 35 / 109

4. Output Neurons and Activation Functions

Activation Functions

Hyperbolic Tangent - tanh

f (z) = tanh(z)

f ′(z) = 1− tanh2(z)

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 36 / 109

4. Output Neurons and Activation Functions

Activation Functions

Rectified Linear Unit - ReLU

f (z) = max(0, z)

f ′(z) =

{
1
0

z > 0
z < 0

A bad initialization of the parameters can lead to a zero gradient

In practice initialize the bias to a positive value

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 37 / 109

4. Output Neurons and Activation Functions

Activation Functions

Hidden units may be chosen more freely - because we don’t fully
understand what they do!

f ′(z) determines how much a role that neuron plays in learning

All technical choices remain voodoo...

There are however best practices and heuristics on which to use

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 38 / 109

4. Output Neurons and Activation Functions

Demonstration

https://playground.tensorflow.org/

Classification problem
Linear separable dataset (third option)

with linear activation

non-linear activation

XOR dataset (second option)
with linear activation

with non-linear activation

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 39 / 109

https://playground.tensorflow.org/

5. Forward and Backpropagation

Outline

1. Learning Representations and the Shift to Neural Networks
2. Single-Layer Neural Networks
3. Multi-Layer Neural Networks
4. Output Neurons and Activation Functions
5. Forward and Backpropagation
6. Gradient Descent
7. Overfitting
8. Theoretical Results
9. Other Network Architectures
10. Examples
11. Wrap-Up

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 40 / 109

5. Forward and Backpropagation

Forward and Backpropagation

In forward propagation compute
Activations at each hidden layer

Output(s) at the output layer

Resulting loss function

In backward propagation (backpropagation) update the
parameters

Compute the contribution of each parameter to the loss (gradient)

Update each parameter with gradient descent

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 41 / 109

5. Forward and Backpropagation

Backpropagation

Also known as backprop

Gradient descent with chain rule
f is a function of one variable f (a (x))

∂f (a (x))
∂x

=
∂f (a (x))
∂a (x)

∂a (x)
∂x

f is a function of two variables f (a (x) , b (x))

∂f (a (x) , b (x))
∂x

=
∂f (a (x))
∂a (x)

∂a (x)
∂x

+
∂f (b (x))
∂b (x)

∂b (x)
∂x

Invented in ML by a ton of people: Amari 1969, Werbos 1975,
Rummelhardt et al 1989

Known in control already in the 1950s, e.g., Bryson 1957

Core Problems
Easy (Matrix): ∂L/∂W:k , Hard (Tensor): ∂ak/∂W:k

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 42 / 109

5. Forward and Backpropagation

Example

x a0 z0

b0

w0 f0(·) a1

b1

w1 f1(·)
ŷ

L(ŷ, y)

y

What is ∂L
∂w0
?

∂L
∂w0

=
∂L
∂ŷ

∂ŷ
∂a1

∂a1
∂z0

∂z0
∂a0

∂a0
∂w0

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 43 / 109

5. Forward and Backpropagation

Example

x a0 z0

b0

w0 f0(·) a1

b1

w1 f1(·)
ŷ

L(ŷ, y)

y

Forward pass

a0 = w0x + b0
z0 = f (a0)

a1 = w1z0 + b1
ŷ = f1 (a1)

Backward pass

∂L
∂ŷ
∂L
∂a1

=
∂L
∂ŷ

∂ŷ
∂a1

∂L
∂z0

=
∂L
∂a1

∂a1
∂z0

∂L
∂a0

=
∂L
∂z0

∂z0
∂a0

∂L
∂w1

=
∂L
∂a1

∂a1
∂w1

∂L
∂b1

=
∂L
∂a1

∂a1
∂b1

∂L
∂w0

=
∂L
∂a0

∂a0
∂w0

∂L
∂b0

=
∂L
∂a0

∂a0
∂b0

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 44 / 109

5. Forward and Backpropagation

Example

L (ŷ, y) = 1
2 (ŷ − y)2

f0 := sigmoid activation, f1 := linear activation

f0 (x) = σ (x), σ′ (x) = σ (x) (1− σ (x))

f ′1 (x) = 1

∂L
∂ŷ

= y − ŷ

∂L
∂a1

= (y − ŷ) f ′1 (a1) = (y − ŷ) · 1

∂L
∂z0

= (y − ŷ)w1

∂L
∂a0

= (y − ŷ)w1f ′0 (a0)

∂L
∂w1

= (y − ŷ) z0

∂L
∂b1

= (y − ŷ) · 1

∂L
∂w0

= (y − ŷ)w1f ′0 (a0) x

∂L
∂b0

= (y − ŷ)w1f ′0 (a0) · 1

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 45 / 109

5. Forward and Backpropagation

Skip connections

For parameters that are “closer” to the input, the gradient needs
to flow from the loss until those parameters

In very deep networks the application of the chain rule can lead
to a zero gradient, and thus no learning occurs

One solution is to use skip connections

x a0 z0

b0

w0 f0(·) a1

b1

w1 f1(·) ŷ

L(ŷ, y)

y

f2(·)

ŷ (f1, f2) = f1 (a1) + f2 (z0)
∂ŷ
∂w0

=
∂ŷ
∂f1

∂f1
∂w0

+
∂ŷ
∂f2

∂f2
∂w0

∂ŷ
∂w1

=
∂ŷ
∂f1

∂f1
∂w1

+
∂ŷ
∂f2

∂f2
∂w1︸︷︷︸
=0

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 46 / 109

5. Forward and Backpropagation

Forward Propagation - the right way

Forward Propagation through n layers
y = W:n

[
aᵀn , 1

]ᵀ
an = fn−1(zn−1)

zn−1 = W:n−1
[
aᵀn−1, 1

]ᵀ
an−1 = fn−2(zn−2)

...
...

z2 = W:2
[
aᵀ2 , 1

]ᵀ
a2 = f1(z1)

z1 = W:1
[
aᵀ1 , 1

]ᵀ
a1 = x

Note: Bias vector wk and weight matrix Wk yield W:k =
[
Wk, wk

]
.

Where k indexes the layer

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 47 / 109

5. Forward and Backpropagation

Backpropagation - the right way

Forwardpropagation Backpropagation

L(yd, y) =
1
2

(yd − y)ᵀ(yd − y) dL = −(yd − y)ᵀ dy

y = W:n
[
aᵀn , 1

]ᵀ dy = Wn dan
an = fn−1(zn−1) dan = f′n−1(zn−1) dzn−1

zn−1 = W:n−1
[
aᵀn−1, 1

]ᵀ
dzn−1 = Wn−1 dan−1

an−1 = fn−2(zn−2) dan−1 = f′n−2(zn−1) dzn−2
zn−2 = W:n−2

[
aᵀn−2, 1

]ᵀ ⇒ dzn−2 = Wn−2 dan−2
...

...
...

...
a2 = f1(z1) da2 = f′1(z1) dz1
z1 = W:1

[
aᵀ1 , 1

]ᵀ dz1 = W1 da1
a1 = x da1 = dx

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 48 / 109

5. Forward and Backpropagation

Backpropagation - the right way

Compute DzKL from

dL = −(yd − y)ᵀWnf′n−1(zn−1) dzn−1 for K = n− 1
dL = −(yd − y)ᵀWnf′n−1(zn−1)Wn−1f′n−2(zn−2) dzn−2 for K = n− 2
...

...

dL = −(yd − y)ᵀ
(
K+1∏
k=n

Wkf′k−1(zk−1)

)
dzK for any K

for all other K ∈ {1, 2, . . . , n}

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 49 / 109

5. Forward and Backpropagation

Backpropagation - the right way

Outer Layer
Using

dy = (dW:n) a:n = dvec (W:n) an = (aᵀ:n ⊗ I) dvec (W:n) ,

we can check

dL = −(yd − y)ᵀdy = −(yd − y)ᵀ (aᵀ:n ⊗ I) dvec (W:n) .

Here, the Kronecker product aᵀ ⊗ I =
[
a1I, · · · , amI

]
, the rules

(A⊗ B)(C⊗ D) = AC⊗ BD, α⊗ b = αb
=⇒ bᵀ(cᵀ ⊗ D) = (1⊗ bᵀ)(cᵀ ⊗ D) = cᵀ ⊗ bᵀD

and, thus, DL = −aᵀ:n ⊗ (yd − y)ᵀ. Unvectorizing yields
∂L
∂Wn

= vec−1dim Wn (DL (Wn)ᵀ) = −(yd − y)
[
aᵀ1, 1

]
.

The unvectorizing is commonly done by reshape.
K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 50 / 109

5. Forward and Backpropagation

Backpropagation - the right way

Hidden Layers and Input Layer: Even DWKL is easy using
dzK+1 =

(
aᵀK ⊗ I

)
dvecWK

∂L
∂WK

= −

((
n−1∏
k=K

Wᵀ
k+1f

′
k(zk)

)
(yd − y)

)[
aᵀK, 1

]
as aᵀ1 = [xᵀ, 1] is the input layer, we also have the input layer
that way

It is computationally much more efficient to do

∂L
∂WK

= −

((
n−1⊙
k=K

Wᵀ
k+1f

′
kdiag(zk)

)
(yd − y)

)[
aᵀK, 1

]
with Hadamard product
[a1, . . . , an]� [b1, . . . , bn] = [a1b1, . . . , anbn], e.g., * in Python

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 51 / 109

5. Forward and Backpropagation

Backpropagation

Multi-layer perceptrons are usually trained using
backpropagation

Non-convex, many local optima

Can get stuck in poor local optima

The design of a working backprop algorithm is somewhat of an art

Because of that, their use was in absolute winter between ~2000
and 2014

Nonetheless, when these methods work, they work very well

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 52 / 109

5. Forward and Backpropagation

Another Way to Compute the Gradients

How would you compute the gradients without using
backpropagation?

We can see the loss as a function of the parameters, i.e.,
L = L (w)

Using the definition of finite differences we compute the change
in each parameter wj as

∂L
∂wj
≈
L
(
w + εuj

)
− L (w)

ε

where ε is a small perturbation and uj is a unit vector in the j
direction

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 53 / 109

5. Forward and Backpropagation

Another Way to Compute the Gradients

∂L
∂wj
≈
L
(
w + εuj

)
− L (w)

ε

If a network as M parameters, how many times do you need to
forward propagate to compute L

(
w + εuj

)
and L (w)?

Exactly M times! If M is very large (for instance millions of
parameters) it is very costly!

With backpropagation, using the chain rule we can compute the
partial derivatives with just one forward and one backward pass

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 54 / 109

6. Gradient Descent

Outline

1. Learning Representations and the Shift to Neural Networks
2. Single-Layer Neural Networks
3. Multi-Layer Neural Networks
4. Output Neurons and Activation Functions
5. Forward and Backpropagation
6. Gradient Descent
7. Overfitting
8. Theoretical Results
9. Other Network Architectures
10. Examples
11. Wrap-Up

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 55 / 109

6. Gradient Descent

Gradient Descent

Wk+1: = Wk: − α∇W:L

Learning rate α

Gradient from Backpropagation ∇W:L

Questions
When to update W?

How to choose α?

How to initialize W?

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 56 / 109

6. Gradient Descent

When to Update W?

Full Gradient Descent
Use the whole training set {(xi, yi)}i=1,...,n

∇W J =
1
n

n∑
i=1

∇WLf (xi, yi,W)

Computationally expensive for a large n

Stochastic Gradient Descent (SGD)
Use one data point of the training set

∇W J ≈ ∇WLf (xi, yi,W)

Needs adaptive learning rate ηt with
∑∞

t=1 ηt =∞ and∑∞
t=1 η

2
t <∞

High variance gradient estimation

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 57 / 109

6. Gradient Descent

When to Update W?

Mini-Batch Gradient Descent
Use a batch of the training set

∇W J ≈
1
k

k∑
i=1

∇WLf (xi, yi,W)

with k < n

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 58 / 109

6. Gradient Descent

When to Update W?

Which one to choose?
Collecting data can introduce a strong bias in successive data
samples

Updates for mini-batches will also be biased, leading to poor
convergence due to big oscillations in weight updates

In practice: balance mini-batches approximately by random
shuffling of the training data

Side note: nowadays, when you read the term Stochastic
Gradient Descent (SGD), most of the times it is referring to
Mini-batch gradient descent

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 59 / 109

6. Gradient Descent

Full gradient descent

-25.0 -18.8 -12.5 -6.2 0.0 6.2 12.5 18.8 25.0
Weight W1, 2, 1

-12.0

-6.0

0.0

6.0

12.0

W
ei

gh
t W

1,
1,

1 5.0

14.25

14.25

30.0

30.0

60.0

60.0

120.0

120.0

250.0

Loss L(W1, 1, 1, W1, 1, 2)

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 60 / 109

6. Gradient Descent

Stochastic Gradient Descent

-25.0 -18.8 -12.5 -6.2 0.0 6.2 12.5 18.8 25.0
Weight W1, 2, 1

-12.0

-6.0

0.0

6.0

12.0

W
ei

gh
t W

1,
1,

1 5.0

14.25

14.25

30.0

30.0

60.0

60.0

120.0

120.0

250.0

Loss L(W1, 1, 1, W1, 1, 2)

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 61 / 109

6. Gradient Descent

Mini-Batch Gradient Descent

-25.0 -18.8 -12.5 -6.2 0.0 6.2 12.5 18.8 25.0
Weight W1, 2, 1

-12.0

-6.0

0.0

6.0

12.0

W
ei

gh
t W

1,
1,

1 5.0

14.25

14.25

30.0

30.0

60.0

60.0

120.0

120.0

250.0

Loss L(W1, 1, 1, W1, 1, 2)

25% of the data

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 62 / 109

6. Gradient Descent

How to choose the learning rate α?

Very small learning rate

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 63 / 109

6. Gradient Descent

How to choose the learning rate α?

Good learning rate

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 64 / 109

6. Gradient Descent

How to choose the learning rate α?

Large learning rate

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 65 / 109

6. Gradient Descent

Plateaus and Valleys

The learning rate should adapt to be larger in flat regions, but
smaller inside the valley

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 66 / 109

6. Gradient Descent

Effect of the Learning Rate

[cs231n.github.io]

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 67 / 109

6. Gradient Descent

Learning Rate Adaptation - Momentum

Insight: Running average m̄0 = 0, m̄k+1 = γkm̄k + (1− γk)mk
Geometric Average (Constant γ): m̄k+1 = (1− γ)

∑k
i=1 γ

k−imi

Arithmetic Average (γk = (k − 1)/k): m̄k+1 = (1/k)
∑k

i=1mi

Practically: Applied to Momentum Terms

Mk+1 = γkMk + (1− γk)∇J(Wk)
Wk+1 = Wk − αkMk+1

with M0 = 0

Physics-equivalent: Move from 1st to 2nd Order ODE

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 68 / 109

6. Gradient Descent

Learning Rate Adaptation - Adadelta

Insight: In plateaus, take large steps as they do not have much
risk. In steep areas take smaller steps

Practically: Normalize by running average of gradient norm

Gk = ∇J(Wk)
Vk+1 = γVk + (1− γ)Gk � Gk

Wk+1,ij = Wk+1,ij −
αk√
Vk,ij + ε

Gk,ij

with a small ε to prevent division by zero and V0 = 0

Note: Two versions exit (ε inside and outside root but in fraction)
[Zeiler, 2012, ADADELTA - An Adaptive Learning Rate Method]

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 69 / 109

6. Gradient Descent

Learning Rate Adaptation - Adam

Insight: Combine Momentum Term with Adagrad

Practically: Just combine both equations
Gk = ∇J(Wk)

Vk+1 = γ1Vk + (1− γ1)Gk � Gk
Mk+1 = γ2Mk + (1− γ2)Gk

Wk+1,ij = Wk+1,ij −
αk√

ηγ1kVk,ij + ε
ηγ1kMk+1,ij

with a ε to prevent division by zero

Initialization V0 = 0, M0 = 0 leads to underestimation fixed by

ηγik =
1

1− γki

Choose γ1 = 0.9, γ2 = 0.999 and ε = 10−8. Not too sensitive to
parameter changes

Note: Violates convergence guarantees...
[Kingma et. al, 2015, Adam: A Method for Stochastic Optimization]

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 70 / 109

6. Gradient Descent

Better Directions for Small Networks

Hessian Approaches
With Hessian H = ∇2J you second order descent with
δw = H−1∇J

Estimate Hessian from Gradient with
Broyden–Fletcher–Goldfarb–Shanno (BFGS)

Use line search instead of learning rate

Problem: Too expensive for big networks

Conjugate gradient
Momentum term with variable update rate, e.g.,

δwt = ∇J(wt) +
∇J(wt)ᵀ∇J(wt)

∇J(wt−1)ᵀ∇J(wt−1)
δwt

with Powell restarts (van der Smagt, 1994)

Problem: Fights stochastic gradient descent
K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 71 / 109

6. Gradient Descent

Better Directions for Small Networks

Levenberg-Marquart
Linearize network

f (xi,w) = f (xi,w0) + ∇wf (xi,w)|ᵀw=w0 δw = fi0 + Jiδw

and solve regularized least squares problem

J ≈ 1
2

(y− (f0 + Jδw))ᵀ (y− (f0 + Jδw)) +
1
2
δwᵀWδw

which yields δw = (JᵀJ+W)−1Jᵀi (y− f0)

Basically Gauss-Newton Method

Levenberg W = λI keeps matrix invertible

Marquardt W = λdiag(JᵀJ)

Adadelta approximates Levenberg’s Method parameterwise

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 72 / 109

6. Gradient Descent

How to Initialize W?

Random Initialization
Can lead to problems in gradient descent

For instance, large absolute values with sigmoid activation
functions, or weights and biases negative or equal to zero in ReLU

Gaussian Initialization
Weights Wkij ∼ N (0,m−1), Bias wk ∼ N (0, 1)

Basically normalization

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 73 / 109

6. Gradient Descent

How to Initialize W?

Xavier/Normalized Initialization
Parameters Wj are initialized as

Wj ∼ U

[
−

√
6

√
nj + nj+1

,

√
6

√
nj + nj+1

]
where Wj are the weights connecting the previous hidden layer j
and the next hidden layer j + 1, nj and nj+1 are the sizes of the
previous and next layer, respectively, and U is the uniform
distribution

Glorot et al, 2010, Understanding the difficulty of training deep
feedforward neural networks

Note: Xavier initialization assumes the activation functions are
symmetric and linear around 0, such as the tanh. For ReLUs it
does not hold, as shown in He et al, 2015, Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet
Classification

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 74 / 109

7. Overfitting

Outline

1. Learning Representations and the Shift to Neural Networks
2. Single-Layer Neural Networks
3. Multi-Layer Neural Networks
4. Output Neurons and Activation Functions
5. Forward and Backpropagation
6. Gradient Descent
7. Overfitting
8. Theoretical Results
9. Other Network Architectures
10. Examples
11. Wrap-Up

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 75 / 109

7. Overfitting

Risk vs Complexity

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 76 / 109

7. Overfitting

Shallow NN

Perfect Network Size

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
Input x

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Ou
tp

ut
 y

Simple Network Topology: 1-3-1

NN 1-3-1
Samples

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 77 / 109

7. Overfitting

Shallow NN

Too Big Network: Prone to overfitting?

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
Input x

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Ou
tp

ut
 y

Big Shallow Network: 1-9-1

NN 1-9-1
Samples

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 78 / 109

7. Overfitting

Deep NN

Deep Network with Equally Many Linear Regions

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
Input x

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Ou
tp

ut
 y

Simple Deep Network: 1-3-3-1

NN 1-3-3-1
Samples

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 79 / 109

7. Overfitting

Neural Networks and Overfitting

Neural Networks can contain hundreds, thousands and
(sometimes) even millions of parameters

In most cases we do not have datasets with millions of
datapoints

Neural Networks are prone to overfit

Fight overfitting with an algorithmic realization of a prior
Regularization

Early stopping

Input noise augmentation

Dropout

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 80 / 109

7. Overfitting

Early Stopping

Stop the training when the validation error starts rising again...

[Goodfellow et al, 2016, Deep Learning]

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 81 / 109

7. Overfitting

Weight Decay

Ridge Loss J(w) = L(w) + λwᵀw yields weight decay

wk+1 = wk − αk (∇wL(wk) + λwk) = (1− λαk)wk + αk∇wL(wk)

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 82 / 109

7. Overfitting

Input Noise Augmentation

Adding noise εi to inputs xi reduces the chance of overfitting
x̃i = xi + εi

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 83 / 109

7. Overfitting

Dropout

Focus more effectively on the relevant neurons and prune others

Zero out weights intermittently and let a subset of neurons
predict

Practically

ai = fi(z)di
with di ∈ {0, 1}
and p(di = 1) = pdropout = 0.5

[Srivastava et al, 2014, Dropout: A Simple Way to Prevent Neural Networks from Overfitting]

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 84 / 109

7. Overfitting

Improve Training - Batch normalization

Covariate Shift
Change in input distribution makes learning hard

Problematic with mini-batches

Hidden values change as their preceding layers change

Fought by Batch Normalization

x̃i =
xi − µi√
σ2i + ε

Like dropout with better performance?

Similar to normalization in Ridge regression

More complex: Removal of batch normalization

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 85 / 109

8. Theoretical Results

Outline

1. Learning Representations and the Shift to Neural Networks
2. Single-Layer Neural Networks
3. Multi-Layer Neural Networks
4. Output Neurons and Activation Functions
5. Forward and Backpropagation
6. Gradient Descent
7. Overfitting
8. Theoretical Results
9. Other Network Architectures
10. Examples
11. Wrap-Up

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 86 / 109

8. Theoretical Results

Why These Improvements in Performance?

Features are learned rather than hand-crafted

More layers capture more invariances (Razavian, Azizpour,
Sullivan, Carlsson, CNN Features off-the-shelf: an Astounding
Baseline for Recognition. CVPRW’14)

More data to train deeper networks

More computing power (GPUs)

Better regularization methods: dropout

New nonlinearities: max pooling, ReLU

However, the theoretical understanding of deep networks
remains shallow

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 87 / 109

8. Theoretical Results

Theoretical Results in Deep Learning

Approximation, depth, width and invariance theory
Perceptrons and multilayer feedforward networks are universal
approximators: Cybenko 1989, Hornik 1989, Hornik 1991, Barron
1993

Scattering networks are deformation stable for Lipschitz
non-linearities: Bruna-Mallat 2013, Wiatowski 2015, Mallat 2016

Generalization and regularization theory
Number of training examples grows exponentially with network
size: Bartlett 2003

Distance and margin preserving embeddings: Giryes 2015,
Sokolik 2016

Geometry, generalization bounds and depth efficiency: Montufar
2015, Neyshabur 2015, Shashua 2014/15/16

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 88 / 109

8. Theoretical Results

Theoretical Results in Deep Learning -
References

Cybenko, Approximations by superpositions of sigmoidal functions,
Mathematics of Control, Signals, and Systems, 2 (4), 303-314, 1989

Hornik, Stinchcombe and White. Multilayer feedforward networks are
universal approximators, Neural Networks, 2(3), 359-366, 1989

Hornik, Approximation Capabilities of Multilayer Feedforward Networks,
Neural Networks, 4(2), 251–257, 1991

Barron, Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Transactions on Information Theory, 39(3):930–945, 1993

Bruna and Mallat, Invariant scattering convolution networks. Trans. PAMI,
35(8):1872–1886, 2013

Wiatowski, Boelcskei, A mathematical theory of deep convolutional neural
networks for feature extraction. arXiv 2015

Mallat, Understanding deep convolutional networks. Phil. Trans. R. Soc. A,
374(2065), 2016

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 89 / 109

8. Theoretical Results

Theoretical Results in Deep Learning -
References

Bartlett and Maass, Vapnik-Chervonenkis dimension of neural nets. The
handbook of brain theory and neural networks, pages 1188– 1192, 2003

Giryes, Sapiro, A Bronstein, Deep Neural Networks with Random Gaussian
Weights: A Universal Classification Strategy? arXiv:1504.08291

Sokolic, Margin Preservation of Deep Neural Networks, 2015

Montufar, Geometric and Combinatorial Perspectives on Deep Neural
Networks, 2015

Neyshabur, The Geometry of Optimization and Generalization in Neural
Networks: A Path-based Approach, 2015

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 90 / 109

9. Other Network Architectures

Outline

1. Learning Representations and the Shift to Neural Networks
2. Single-Layer Neural Networks
3. Multi-Layer Neural Networks
4. Output Neurons and Activation Functions
5. Forward and Backpropagation
6. Gradient Descent
7. Overfitting
8. Theoretical Results
9. Other Network Architectures
10. Examples
11. Wrap-Up

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 91 / 109

9. Other Network Architectures

Hubel and Wiesel Receptive Fields

D. H. Hubel and T. N. Wiesel, 1959, Receptive fields of single neurones in
the cat’s striate cortex

The striate cortex is the first part of the visual cortex that
processes visual information

A cat was shown a set of
images (bars) with different
orientations

Deep Neural Networks

Convolutional Networks II

Bhiksha Raj

1

Response in the striate
cortex. Cells are activated
with a vertical line

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 92 / 109

9. Other Network Architectures

Convolutional Neural Networks (CNNs)

CNNs are particularly suited for feature extraction in spatially
correlated data, such as images

Typical CNN for image classification task

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 93 / 109

9. Other Network Architectures

Convolutional Neural Networks (CNNs)

Features maps are computed by applying convolutional kernels to the
input or feature maps

Pooling reduces dimensionality. For instance, max_pooling(k) takes
the pixel with largest value among k neighboring pixels

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 94 / 109

9. Other Network Architectures

Why use Convolutions?

Instead of computing the pre-activation of a layer with a matrix
multiplication between weights and the previous layer, CNNs
employ a convolution operation

Convolution

s (t) = (x ∗ w) (t) =

∫
x (a)w (t − a) da

where x is the input signal and w is often called the kernel

Acts as a filter of the input

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 95 / 109

9. Other Network Architectures

Why use CNNs instead of Fully Connected
Networks?

Fully Connected Layers
With high dimensional input data the number parameters
explodes

Grey Image 1000 x 1000 pixels, hidden layer with 1000
units =⇒ 1 billion parameters (just for the first layer)

Does not extract local features, which is usually present in images

Convolutional Layers
The learned parameters are the kernel weights, which are much
smaller than the input and are shared over the whole input

Computes local features, since the output of a kernel involves a
computation over adjacent pixels

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 96 / 109

9. Other Network Architectures

Recurrent Neural Networks (RNNs)

RNNs are networks with memory

ht = f
(
ht−1, xt;W

)
where h is the hidden layer, x is the input and W the parameters

Used for time dependent / series data
Natural Language Processing

Speech Recognition

Dynamical Systems

Stock market

Brain-Computer Interface

...
[colah.github.io]K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 97 / 109

9. Other Network Architectures

Long Short-Term Memory Networks (LSTMs)

Computing gradients in RNNs is done with Back-Propagation
Through Time (BPTT). A parameter is updated by adding all the
contributions to the loss over time

BPTT in RNNs leads to vanishing and exploding gradients (Pascanu
et al, 2013, On the difficulty of training recurrent neural networks)

LSTMs fight the gradient problems with a different architecture that
lets the gradient flow better in BPTT, and thus are capable of
learning more effectively than traditional RNNs

For more information read Schmidhuber et al, 1997, Long
Short-Term Memory

[colah.github.io]

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 98 / 109

10. Examples

Outline

1. Learning Representations and the Shift to Neural Networks
2. Single-Layer Neural Networks
3. Multi-Layer Neural Networks
4. Output Neurons and Activation Functions
5. Forward and Backpropagation
6. Gradient Descent
7. Overfitting
8. Theoretical Results
9. Other Network Architectures
10. Examples
11. Wrap-Up

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 99 / 109

10. Examples

Neural Networks in Computer Vision

Since 2012, CNNs have regained track in Computer Vision tasks
after the achievement of AlexNet in the ImageNet Classification
task

Mainly from training in GPUs and using regularization
techniques such as dropout

[Krizhevsky et al, 2012, ImageNet Classification with Deep Convolutional Neural Networks]

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 100 / 109

10. Examples

Neural Networks in Computer Vision

The layers in CNNs learn interpretable representations

[Nvidia]

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 101 / 109

10. Examples

Neural Networks in Autonomous Systems

End to End Learning for Self-Driving Cars

https://www.youtube.com/watch?v=-96BEoXJMs0
[Bojarski et al, 2016, End to End Learning for Self-Driving Cars]

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 102 / 109

https://www.youtube.com/watch?v=-96BEoXJMs0

10. Examples

Neural Networks in Autonomous Systems

Training Network

Prediction Network

[Bojarski et al, 2016, End to End Learning for Self-Driving Cars]

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 103 / 109

10. Examples

Neural Networks in Autonomous Systems

CNN Architecture

[Bojarski et al, 2016, End to End Learning for Self-Driving Cars]

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 104 / 109

11. Wrap-Up

Outline

1. Learning Representations and the Shift to Neural Networks
2. Single-Layer Neural Networks
3. Multi-Layer Neural Networks
4. Output Neurons and Activation Functions
5. Forward and Backpropagation
6. Gradient Descent
7. Overfitting
8. Theoretical Results
9. Other Network Architectures
10. Examples
11. Wrap-Up

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 105 / 109

11. Wrap-Up

11. Wrap-Up

You know now:

What neural networks are and how they relate to the brain

How neural networks build stacks of feature representations

A network of one layer is enough, but in practice not a good idea

How to do forward and backpropagation

Different ways of doing fast gradient descent
Full, stochastic, mini-batch

Speedup training via learning rate adaptation

How to initialize the parameters

Why neural networks overfit and what you can do to about it

Why CNNs are used for spatial correlated data

Why LSTMs are used for time series data

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 106 / 109

11. Wrap-Up

Self-Test Questions

How does logistic regression relate to neural networks?

How do neural networks relate to the brain?

What kind of functions can single layer neural networks learn?

Why do two layers help? How many layers do you need to represent arbitrary
functions?

Why were neural networks abandoned in the 1970s, and later in the 1990s?
Why did neural networks re-awaken in the 2010s?

What output layer and loss function to use given the task (regression,
classification)?

Why use a ReLU activation instead of sigmoid?

Derive the equations for forward and backpropagation for a simple network

What is mini-batch gradient descent? Why use it instead of SGD or full
gradient descent?

Why neural networks can overfit and what are the options to prevent it?

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 107 / 109

11. Wrap-Up

Acknowledgment and Extra Material

Some ideas for these slides where taken from the Machine
Learning lecture (SS 2017) from the University of Freiburg, and
from Stanford lecture on Convolutional Neural Networks (http:
//cs231n.github.io/convolutional-networks/)

Deep Learning Book, 2016, Goodfellow, Bengio, Courville
https://www.deeplearningbook.org/

Neural Networks Playground
https://playground.tensorflow.org/

Sebastian Ruder’s blog has an overview on gradient descent
optimization algorithms

http://ruder.io/optimizing-gradient-descent/

Andrej Karpathy’s blog has a recent overview on best practices to
train neural networks

http://karpathy.github.io/2019/04/25/recipe/
K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 108 / 109

http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
https://www.deeplearningbook.org/
https://playground.tensorflow.org/
http://ruder.io/optimizing-gradient-descent/
http://karpathy.github.io/2019/04/25/recipe/

11. Wrap-Up

Homework

Reading Assignment for next lecture
Bishop 7.1

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 109 / 109

	Learning Representations and the Shift to Neural Networks
	Single-Layer Neural Networks
	Multi-Layer Neural Networks
	Output Neurons and Activation Functions
	Forward and Backpropagation
	Gradient Descent
	Overfitting
	Theoretical Results
	Other Network Architectures
	Examples
	Wrap-Up

