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Non-Linear Support Vector Classification

Outlook on Applications, Relevance Vector Machines and Support
Vector Regression



TECHNISCHE
UNIVERSITAT
DARMSTADT

Outline

1. From Structural Risk Minimization to Linear SVMs

2. Nonlinear SVMs

3. Applications

4. Wrap-Up



1. From Structural Risk Minimization to Linear SVMs

~ DARMSTADT

Outline

1. From Structural Risk Minimization to Linear SVMs

K. Kersting based on Slides from J. Peters - Statistical Machine Learning -« Summer Term 2020 4/59



TECHNISCHE
UNIVERSITAT
! DARMSTADT

Structural Risk Minimization

How can we implement structural risk minimization?
R (W) < Remp (W) +€(N,p", h)

where N is the number of training examples, p* is the probability
that the bound is met and h is the VC-dimension
Classical Machine Learning algorithms

Keep ¢ (N, p*, h) constant and minimize Remp (W)

e(N,p*,h) is fixed by keeping some model parameters fixed, e.g.
the number of hidden neurons in a neural network (see later)

Support Vector Machines (SVMs)
Keep Remp (W) constant and minimize e (N, p*, h)

In practice Remp (W) = 0 with separable data

e (N, p*, h) is controlled by changing the VC-dimension (‘capacity
control”)
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Support Vector Machines

Linear classifiers (generalized later)

Approximate implementation of the structural risk minimization
principle

If the data is linearly separable, the empirical risk of SVM
classifiers will be zero, and the risk bound will be approximately
minimized

SVMs have built-in “guaranteed” generalization abilities
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Support Vector Machines

m For now assume linearly separable data

m N training data points
{x,-,y,~},N:1 ,withx; e R7and y; € {-1,1}
m Hyperplane that separates the data

y(x) = wix+b

m Which hyperplane shall we use? How can we minimize the VC
dimension?
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Support Vector Machines

m Intuitively: We should find the hyperplane with the maximum
“distance” to the data

margin

Generalizes best to Maximize the margin
unseen data (distance to the closest data point)
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Support Vector Machines

m Maximizing the margin
= Why does that make sense?

= Why does it minimize the VC dimension?

m Key result (from Vapnik)
= If the data points lie in a sphere of radius R, ||x;|| <R, ...

m ...and the margin of the linear classifier in d dimensions is -, then

Skl

m Maximizing the margin lowers a bound on the VC-dimension!
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Support Vector Machines

m Find a hyperplane so that the data is linearly separated
yi(Wix;+b)>1 Vi

m Enforce y; (WTx; + b) = 1 for at least one data point
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Support Vector Machines

= We can easily express the margin

m The distance to the hyperplane is

= (Note in the figure b = wy)

= Hence the margin is m
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Support Vector Machines

m Support vectors: all points that lie on the margin, i.e.,
yi(WTx; + b) =1
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Support Vector Machines

= Maximizing the margin 1/ ||w|| is equivalent to minimizing ||w/|?
m Formulate as constrained optimization problem
: 1 2
arg min 5 ||W
g L wi
st. yi(Wix;+b)—1>0 Vi
= Lagrangian formulation

N
1
L(w.b.a) = 5 [W|* =D o (y; (WTx; +b) — 1)
i=1
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Support Vector Machines

N
1
minL (W, b,a) = 5 IWlI* =" i (vi (WT; + b) — 1)
i—1

N
L(w,b
—a (W, ,a)zo — Za;yizo
ob P
L (w, b, @) N
# =0 = w= ; o YiX;

m The separating hyperplane is a linear combination of the input
data

m But what are the «;?
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Sparsity

m Important property
m Almost all the «; are zero

m There are only a few support .
vectors

m But the hyperplane was written as

N
W= Z QjyiX;
i=1

m SVMs are sparse learning machines
m The classifier only depends on a few data points
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Dual Form

Let us rewrite the Lagrangian

N
1
L(w,b,a) = §||W||2—§ a;j (y; (WTX; + b) — 1)
i=1

N N N
1
= 3 Iw])* - Z QiYWTXj — Z ;yib + Zai
i=1 i=1 i=1
We know that

N
Z ajyi =0
i—1

Hence we have

[(W, a By HWH Zalylw X + Za/



Dual Form

[ (W, a) =3 ||W|| Z aiyiWTX; + Z 0%

Use the constraint w = Z,N:l Q;jYiX;
L(W7 a) = 3 HWH Za:)’/za})fjx xl+zal
j=
N
- = ku Z Za,a,y,y, (x x,) 3
i=1

i=1 j=1
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Dual Form

= Finally we obtain the Wolfe dual formulation

a)—Za, 5 ZZaa/y,y/ <x x,>

i=1 j=1

= We can now solve the original problem by maximizing the dual
function L
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Support Vector Machines - Dual Form

N

N N
min ;- % > iy (Xiji)
i=1

i=1 j=1
st. o > 0

N
> ay;=0
i=1

The separating hyperplane is given by the Ns support vectors

Ns
W= Z Q;YiXi
i=1

b can also be computed, but we skip the derivation



TECHNISCHE
UNIVERSITAT
DARMSTADT

Support Vector Machines so far

Both the original SVM formulation (primal) as well as the
derived dual formulation are quadratic programming problems
(quadratic cost, linear constraints), which have unique solutions
that can be computed efficiently

Why did we bother to derive the dual form? To go beyond linear
classifiers!
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Nonlinear SVMs

Nonlinear transformation ¢ of the data (features)
xeRY ¢:RI = H

Hyperplane H (linear classifier in H)
wig(x)+b=0

Nonlinear classifier in RY

Same trick as in least-squares regression. So what is so special
here?
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L

Nonlinear SVMs

m Dual form

N 1 N N
minZa; — i ZZ ,qulyj (X X,)
i=1

i=1 j=1
st.a; >0

N
Z ajy; =0
-1

m With a nonlinear transformation, we obtain
Za/ 2 21210504/)//)// ) ¢(XI))
! =

m ¢ (x;) only appears in scalar products with another ¢ (xj)
m We only need to be able to evaluate scalar products
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2. Nonlinear SVMs

Nonlinear SVMs

m What about the discriminant function?

y(x) =wTo(x)+b

= We can represent the weights differently and write the nonlinear
discriminant function as

Ns
W= ayié(x)
i=1

Ns
y() = ayio (x)T¢(x) + b
i=1
m where Ns is the number of support vectors

m The discriminant function can also be written with scalar
products of the nonlinear features only
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Nonlinear SVMs

Both the dual optimization problem and the discriminant
function can be written in terms of scalar products of the
features

We have already seen this when we talked about the dual
version of the perceptron

In fact the discriminant function even has the very same
functional form

Ns
y(x) =D o ()7 ¢ (x) + b
i=1
Key difference: In an SVM the parameters «; maximize the

margin of the classifier, and have built-in generalization
properties



Kernel Trick

Kernel trick: replace every occurrence of a scalar product
between features with a kernel function

K (xi,x;) = & (x))7 ¢ (x;)

If we can find a kernel function that is equivalent to this scalar
product, we can avoid mapping into a high-dimensional space
and instead compute the scalar-product directly

What are examples of such kernels and when do they exist?



Polynomial Kernel

Polynomial kernel of 2nd degree

K(xy) = (xy)’ xyeR?
Equivalence to the dot product
K (x,y) = (xXTy)? = X3y} + 2x1x0y1y2 + yiy3
 \'( ¥
d(N)To(y) = | VZxix V2y1ys

X2 2
2 Y2

Why is the kernel method an advantage?
Number of computations with kernel: 3 (dot product between x
andy) + 1 (square the result) = 4

Number of computations with feature transformation and then
dot product?
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Polynomial Kernel

We could also have used ¢ (x) as

(7o 1(§ﬁ)T1<€ﬁ)
o(x)"o(y) = —= X1X2 —= y1y2
I\t ) V2 i

¢ (x) is not unique for a given kernel function K (x,y)
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Polynomial Kernel of Degree d

Let C,4 (x) be the transformation that maps a vector into the
space of all ordered monomials of degree d

We can represent all polynomials of degree d as linear functions
in this transformed space

Example
Ordered monomials: x%, x;x2, Xox1, X

Unordered monomials: xZ, x;x2, x3

The kernel K (x,y) = (xTy)“ lets us compute arbitrary scalar
products without doing the explicit mapping

K (x,y) = (xTy)" = Cq (x)T C4(y)
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Polynomial Kernel of Degree d

K (x,y) = (xTy)" = Cq (x)T Cq (y)

Dimensionality of the transformed space H: < d+N-1 )

d

Example

N =16 x 16 = 256
d=4
dim (H) = 183181376

The classifier has VC-dimension dim (H) + 1!
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SVM - Linear Case
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SVM with Kernels

m Polynomial kernel with degree 3

.

Linearly separable Not linearly separable
Classifier almost linear (in original space)
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Constructing Kernels

So far we identified some linear transformation ¢ (x) that we
think will be useful

Then we find a kernel K (x;,x;) that allows us to compute the
scalar product without making the mapping explicit

K (xi,%7) = 6 ()T ¢ ()
What do kernels do?
They measure similarity (in a transformed space)

But what if we have a notion of similarity and want to encode this
in a kernel function K (x;, x;) directly?



2. Nonlinear SVMs

Radial Basis Functions

= Radial Basis Function (RBF) kernel

2
x J—
K(x,y) = exp (—H 203” )

m Measures similarity between x and y

m Interesting property: H is infinite dimensional
= Intuition given by Taylor series expansion

x X x"
e”‘:1+ﬂ+ﬁ+...+m+...
m Since we only use the kernel function, it is not a problem

m But the hyperplane also has infinite VC-dimension!
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Radial Basis Function Kernel

x XX
X X
-
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VC-Dimension for RBF Kernel

Intuition: If we can make the radius of the kernel arbitrarily
small, then at some point every data point will have its ‘own”
kernel

But in contrast: If we bound the radius of the RBF, we can limit
the VC-dimension!
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Kernels

Question: Is the Gaussian RBF kernel a valid kernel, i.e., is there
a mapping {H, ¢} so that

KOGy)=¢()To(y) with ¢:RT—H

How can we assess this more generally?
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Mercer’s Condition

A function K (x,y) is a valid kernel, if for every g (x) with

/g (x)2 dx < oo
it holds that

//K(x,y)g(x)gw)dxdyzo
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Kernels satisfying Mercer’s condition

Inhomogeneous polynomial kernel
K(xy) = (xy +¢)’
Can also represent polynomials of degree d

Gaussian RBF kernel

2
X J—
K (x,y) = exp <—| 203’” )

Hyperbolic tangent kernel

K (x,y) = tanh (axTy + b)
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Combining Kernels

It may not be always easy to check if Mercer’s condition is
satisfied, but it is possible to construct new kernels out of known
ones

If K1 (x,y) and K; (x,y) are valid kernels, then so are

K1 (x,y)

K1 (x,y) + Kz (x,y)
K1 (x,y) Kz (x,y)
FO) K (x,y)f (y)



2. Nonlinear SVMs

Non-separable data

= What if the data is not linearly separable?

m Simple solution: transform the features into a space so that they
become linearly separable

m E.g. RBF kernel with small kernel radius

= Problem: such a classifier will have a very high VC-dimension,
and thus has a large capacity

= It will lead to overfitting

m Solution: allow for data points to “violate the margin”
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SVMs with slack

Instead of requiring that the data is perfectly linearly separable

wix; +b>+1 fory;,=+1
wix;+b< -1 fory,=-1

Allow for small violations &; from perfect separation

WIX;+b>+1-¢ fory;=+1
wWix;+b<-1+¢ fory,=-1
& >0 Vi



2. Nonlinear SVMs

SVMs with slack

m We require that
yi(Wixj+b) >1-¢, &>0Vi

m & are called slack variables
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SVMs with slack

m We have to penalize the deviations

N
o1
argmin> Wl +CY &
’ i=1
st.yi(whxj+b)—14+&>0
& >0

m Maximize the margin while minimizing the penalty for all data
points that are not outside the margin

m The weight C allows us to specify a trade-off. Typically
determined through cross-validation

m Even if the data is separable, it may be better to allow for an
occasional penalty
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SVMs with slack

Dual formulation

N N
max L Za, ZZ QoYY (x x,)
i=1

i=1 j=1
st.0<a; <C

N
> ;=0
i=1

where «; < Cis called box constraint

The separating hyperplane is given by the Ns support vectors

Ns
w= Z Q;yiX;
i=1
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3. Applications
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Text Classification

Joachims, T., Text categorization with Support Vector Machines:
learning with many relevant features, EMCL 1998

Problem: Classify documents into a number of categories

The text is represented using word statistics, i.e. histograms of
the word frequency

We count how often every word occurs and ignore their order
(“bag of words”)

Very high-dimensional feature space (roughly 10,000 dimensions)

Very few features that are not relevant (difficult to apply feature
selection or dimensionality reduction)



Text Classification

3. Applications
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SVM (poly) SVM (rbf)

degree d = width v =
Bayes|Rocchio|C4.5[k-NN|l 1 | 2 | 3 | 4 | 5 [[06]08]1.0]12
earn 95.9 | 96.1 |96.1]97.3 [[98.2]98.4[98.5[98.4[98.3][98.5[08.5[98.4[98.3
acq 91.5 | 92.1 |85.3]92.0 [92.6]94.6]95.2[95.2[95.3[[95.0[95.3/95.3[95.4
money-ix || 62.9 | 67.6 |69.4]78.2 ||66.9|72.575.4[74.9]76.2][74.0(75.4[76.3[75.9
grain 72.5 | 79.5 |89.1]82.2 ||91.3]93.1{92.4]91.3]89.9][93.1]91.9[91.9[90.6
crude R1.0 | 81.5 |75.5]85.7 ||86.0[87.3[88.6|88.9]87.8][88.9|29.0/88.9|8R.2
trade 50.0 | 77.4 |59.2]77.4 ||69.2|75.5|76.6 | 77.3|77.1]| 76.9|78.0[77.8[76.8
interest || 58.0 | 72.5 |49.1]74.0 [[69.8[63.3]67.9|73.1|76.2][74.4|75.0]76.2[76.1
ship 78.7 | 83.1 |80.9]79.2 ||82.0[85.4[26.0(86.5/86.0|[85.4[86.5/87.6[87.1
wheat 60.6 | 79.4 |85.5]76.6 ||83.1/84.5/85.2|85.9|83.8][85.2|85.9]85.9|85.9
corn 47.3 | 62.2 |87.7| 77.0 ||86.086.5/85.3]85.7|83.9][85.1[85.7[85.7[84.5
- 84.2[85.1[85.9]86.2[85.9 | 86.4[86.5[86.3[86.2

microavg.|| 72.0 | 79.9 |79.4/82.3 combined: 86.0 combined: 86.4
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Handwritten Digit Classification

U.S. Postal Service Database
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Handwritten Digit Classification

Human performance: 2.5% error

Various learning algorithms
16.2%:

5.9%: 2-layer neural network
5.1%: LeNet 1 - 5-layer neural network

Various SVM results
4.0%: Polynomial kernel (p = 3, 274 support vectors)

4.1%: Gaussian kernel (o = 0.3, 291 support vectors)



Handwritten Digit Classification

Very little overfitting and good generalization

degree of || dimensionality of | support | raw
polynorial feature space vectors | error
1 256 282 8.9
2 = 33000 227 4.7
3 ~ 1 x 108 274 4.0
4 a1 x10° 321 4.2
5 ~1x 10'2 374 4.3
6 ~ 1 x 10M 377 4.5
7 ~ 1 x 106 422 4.5




TECHNISCHE
UNIVERSITAT
DARMSTADT

Handwritten Digit Classification

To get even better results

Supply knowledge about invariances in the data: geometric
deformations, etc.

2.7% error: elastic matching (no learning)
Use knowledge of how digits can deform

Classify test digit by finding the template that required
least deformation

Recent results
With more training data, better modeling of invariances, etc.

Error down to about 0.5% with SVMs and 0.4% with neural
networks



3. Applications
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(Lack of) Sparseness

m If the classes overlap, SVMs may need many support vectors

-2
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3. Applications

Relevance Vector Machines

= Probabilistic alternative to SVMs
= Much sparser results

= No notion of margin maximization

=2t

-2
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3. Applications TECHNISCHE

Support Vector Regression

m SVMs can also be adapted to regression tasks

it 0. ©
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4. Wrap-Up
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4. Wrap-Up

You know now
What the main idea behind SVMs is

Why maximizing the margin is a good idea

How to translate the SVM problem into a quadratic optimization
problem

How to interpret the support vectors

How to use SVMs for data that is not linearly separable
What the kernel trick is

How to construct kernels

How to formulate SVMs with slack variables
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Self-Test Questions

How did learning theory motivate support vector machines?
What does maximum margin separation mean?

Why did the SVM-craze drown the Neural-Networks-craze?
What is a Kernel?

How does a Kernel relate to features?

How can | build Kernels from Kernels?

What functions does the Radial Basis Function Kernel contain?

How does support vector regression work?
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Homework

m Reading Assignment for next lecture
m Bishop 6.1, 6.3, 6.4
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