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1. From Structural Risk Minimization to Linear SVMs

Structural Risk Minimization

How can we implement structural risk minimization?

R (w) ≤ Remp (w) + ε (N, p∗, h)

where N is the number of training examples, p∗ is the probability
that the bound is met and h is the VC-dimension

Classical Machine Learning algorithms
Keep ε (N, p∗, h) constant and minimize Remp (w)

ε (N, p∗, h) is fixed by keeping some model parameters fixed, e.g.
the number of hidden neurons in a neural network (see later)

Support Vector Machines (SVMs)
Keep Remp (w) constant and minimize ε (N, p∗, h)

In practice Remp (w) = 0 with separable data

ε (N, p∗, h) is controlled by changing the VC-dimension (“capacity
control”)

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 5 / 59



1. From Structural Risk Minimization to Linear SVMs

Support Vector Machines

Linear classifiers (generalized later)

Approximate implementation of the structural risk minimization
principle

If the data is linearly separable, the empirical risk of SVM
classifiers will be zero, and the risk bound will be approximately
minimized

SVMs have built-in “guaranteed” generalization abilities
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1. From Structural Risk Minimization to Linear SVMs

Support Vector Machines

For now assume linearly separable data

N training data points

{xi, yi}Ni=1 , with xi ∈ Rd and yi ∈ {−1, 1}
Hyperplane that separates the data

y (x) = wᵀx+b

x2

x1

w

x

y(x)
kwk

x?

�w0

kwk

y = 0

y < 0

y > 0

R2

R1

Which hyperplane shall we use? How can we minimize the VC
dimension?
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1. From Structural Risk Minimization to Linear SVMs

Support Vector Machines

Intuitively: We should find the hyperplane with the maximum
“distance” to the data
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1. From Structural Risk Minimization to Linear SVMs

Support Vector Machines

Maximizing the margin
Why does that make sense?

Why does it minimize the VC dimension?

Key result (from Vapnik)
If the data points lie in a sphere of radius R, ‖xi‖ < R, .. .

. . .and the margin of the linear classifier in d dimensions is γ, then

h ≤ min

{
d,
⌈
4R2

γ2

⌉}
Maximizing the margin lowers a bound on the VC-dimension!
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1. From Structural Risk Minimization to Linear SVMs

Support Vector Machines

Find a hyperplane so that the data is linearly separated

yi (wᵀxi + b) ≥ 1 ∀i

Enforce yi (wᵀxi + b) = 1 for at least one data point
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1. From Structural Risk Minimization to Linear SVMs

Support Vector Machines

x2

x1

w

x

y(x)
kwk

x?

�w0

kwk

y = 0

y < 0

y > 0

R2

R1

We can easily express the margin

The distance to the hyperplane is
y (xi)
‖w‖ =

wᵀxi + b
‖w‖

(Note in the figure b = w0)

Hence the margin is 1
‖w‖
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1. From Structural Risk Minimization to Linear SVMs

Support Vector Machines

y = 1

y = 0

y = �1

Support vectors: all points that lie on the margin, i.e.,
yi (wᵀxi + b) = 1
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1. From Structural Risk Minimization to Linear SVMs

Support Vector Machines

Maximizing the margin 1/ ‖w‖ is equivalent to minimizing ‖w‖2

Formulate as constrained optimization problem

argmin
w,b

1
2 ‖w‖

2

s.t. yi (wᵀxi + b)− 1 ≥ 0 ∀i

Lagrangian formulation

L (w, b, α) =
1
2
‖w‖2 −

N∑
i=1

αi (yi (wᵀxi + b)− 1)
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1. From Structural Risk Minimization to Linear SVMs

Support Vector Machines

min L (w, b, α) =
1
2
‖w‖2 −

N∑
i=1

αi (yi (wᵀxi + b)− 1)

∂L (w, b, α)
∂b

= 0 =⇒
N∑
i=1

αiyi = 0

∂L (w, b, α)
∂w

= 0 =⇒ w =
N∑
i=1

αiyixi

The separating hyperplane is a linear combination of the input
data

But what are the αi?
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1. From Structural Risk Minimization to Linear SVMs

Sparsity

Important property
Almost all the αi are zero

There are only a few support
vectors

y = 1

y = 0

y = �1

But the hyperplane was written as

w =
N∑
i=1

αiyixi

SVMs are sparse learning machines
The classifier only depends on a few data points
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1. From Structural Risk Minimization to Linear SVMs

Dual Form

Let us rewrite the Lagrangian

L (w, b, α) =
1
2
‖w‖2 −

N∑
i=1

αi (yi (wᵀxi + b)− 1)

=
1
2
‖w‖2 −

N∑
i=1

αiyiwᵀxi −
N∑
i=1

αiyib+
N∑
i=1

αi

We know that
N∑
i=1

αiyi = 0

Hence we have

L̂ (w, α) =
1
2
‖w‖2 −

N∑
i=1

αiyiwᵀxi +
N∑
i=1

αi
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1. From Structural Risk Minimization to Linear SVMs

Dual Form

L̂ (w, α) =
1
2
‖w‖2 −

N∑
i=1

αiyiwᵀxi +
N∑
i=1

αi

Use the constraint w =
∑N
i=1 αiyixi

L̂ (w, α) =
1
2
‖w‖2 −

N∑
i=1

αiyi
N∑
j=1

αjyjx
ᵀ
j xi +

N∑
i=1

αi

=
1
2
‖w‖2 −

N∑
i=1

N∑
j=1

αiαjyiyj
(
xᵀj xi

)
+

N∑
i=1

αi
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1. From Structural Risk Minimization to Linear SVMs

Dual Form

We have also

1
2
‖w‖2 = 1

2
wᵀw =

1
2

N∑
i=1

N∑
j=1

αiαjyiyj
(
xᵀj xi

)

Finally we obtain the Wolfe dual formulation

L̃ (α) =
N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyj
(
xᵀj xi

)
We can now solve the original problem by maximizing the dual
function L̃

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 18 / 59



1. From Structural Risk Minimization to Linear SVMs

Support Vector Machines - Dual Form

min
N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyj
(
xᵀj xi

)
s.t. αi ≥ 0

N∑
i=1

αiyi = 0

The separating hyperplane is given by the NS support vectors

w =

NS∑
i=1

αiyixi

b can also be computed, but we skip the derivation
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1. From Structural Risk Minimization to Linear SVMs

Support Vector Machines so far

Both the original SVM formulation (primal) as well as the
derived dual formulation are quadratic programming problems
(quadratic cost, linear constraints), which have unique solutions
that can be computed efficiently

Why did we bother to derive the dual form? To go beyond linear
classifiers!
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2. Nonlinear SVMs
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2. Nonlinear SVMs

Nonlinear SVMs

Nonlinear transformation φ of the data (features)

x ∈ Rd φ : Rd → H

Hyperplane H (linear classifier in H)
wᵀφ (x) + b = 0

Nonlinear classifier in Rd

Same trick as in least-squares regression. So what is so special
here?
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2. Nonlinear SVMs

Nonlinear SVMs

Dual form

min
N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyj
(
xᵀj xi

)
s.t. αi ≥ 0

N∑
i=1

αiyi = 0

With a nonlinear transformation, we obtain

L̃ (α) =
N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyj (φ (xj)
ᵀ
φ (xi))

φ (xi) only appears in scalar products with another φ
(
xj
)

We only need to be able to evaluate scalar products
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2. Nonlinear SVMs

Nonlinear SVMs

What about the discriminant function?

y (x) = wᵀφ (x) + b

We can represent the weights differently and write the nonlinear
discriminant function as

w =

NS∑
i=1

αiyiφ (xi)

y (x) =
NS∑
i=1

αiyiφ (xi)ᵀ φ (x) + b

where NS is the number of support vectors

The discriminant function can also be written with scalar
products of the nonlinear features only
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2. Nonlinear SVMs

Nonlinear SVMs

Both the dual optimization problem and the discriminant
function can be written in terms of scalar products of the
features

We have already seen this when we talked about the dual
version of the perceptron

In fact the discriminant function even has the very same
functional form

y (x) =
NS∑
i=1

αiyiφ (xi)ᵀ φ (x) + b

Key difference: In an SVM the parameters αi maximize the
margin of the classifier, and have built-in generalization
properties
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2. Nonlinear SVMs

Kernel Trick

Kernel trick: replace every occurrence of a scalar product
between features with a kernel function

K
(
xi, xj

)
= φ (xi)ᵀ φ

(
xj
)

If we can find a kernel function that is equivalent to this scalar
product, we can avoid mapping into a high-dimensional space
and instead compute the scalar-product directly

What are examples of such kernels and when do they exist?
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2. Nonlinear SVMs

Polynomial Kernel

Polynomial kernel of 2nd degree

K (x, y) = (xᵀy)2 x, y ∈ R2

Equivalence to the dot product

K (x, y) = (xᵀy)2 = x21y
2
1 + 2x1x2y1y2 + y

2
1y
2
2

φ (x)ᵀ φ (y) =

 x21√
2x1x2
x22

ᵀ y21√
2y1y2
y22


Why is the kernel method an advantage?

Number of computations with kernel: 3 (dot product between x
and y) + 1 (square the result) = 4

Number of computations with feature transformation and then
dot product?
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2. Nonlinear SVMs

Polynomial Kernel

We could also have used φ (x) as

φ (x)ᵀ φ (y) =
1√
2

 x21 − x22
2x1x2
x21 + x

2
2

ᵀ

1√
2

 y21 − y22
2y1y2
y21 + y

2
2


φ (x) is not unique for a given kernel function K (x, y)
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2. Nonlinear SVMs

Polynomial Kernel of Degree d

Let Cd (x) be the transformation that maps a vector into the
space of all ordered monomials of degree d

We can represent all polynomials of degree d as linear functions
in this transformed space

Example
Ordered monomials: x21, x1x2, x2x1, x

2
2

Unordered monomials: x21, x1x2, x
2
2

The kernel K (x, y) = (xᵀy)d lets us compute arbitrary scalar
products without doing the explicit mapping

K (x, y) = (xᵀy)d = Cd (x)ᵀ Cd (y)
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2. Nonlinear SVMs

Polynomial Kernel of Degree d

K (x, y) = (xᵀy)d = Cd (x)ᵀ Cd (y)

Dimensionality of the transformed space H:
(
d + N − 1

d

)
Example

N = 16× 16 = 256
d = 4

dim (H) = 183181376

The classifier has VC-dimension dim (H) + 1!
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2. Nonlinear SVMs

SVM - Linear Case
16

(i.e., also for the nonlinear case described below). The analogy emphasizes the interesting
point that the “most important” data points are the support vectors with highest values of
α, since they exert the highest forces on the decision sheet. For the non-separable case, the
upper bound αi ≤ C corresponds to an upper bound on the force any given point is allowed
to exert on the sheet. This analogy also provides a reason (as good as any other) to call
these particular vectors “support vectors”10.

3.7. Examples by Pictures

Figure 7 shows two examples of a two-class pattern recognition problem, one separable and
one not. The two classes are denoted by circles and disks respectively. Support vectors are
identified with an extra circle. The error in the non-separable case is identified with a cross.
The reader is invited to use Lucent’s SVM Applet (Burges, Knirsch and Haratsch, 1996) to
experiment and create pictures like these (if possible, try using 16 or 24 bit color).

Figure 7. The linear case, separable (left) and not (right). The background colour shows the shape of the
decision surface.

4. Nonlinear Support Vector Machines

How can the above methods be generalized to the case where the decision function11 is not
a linear function of the data? (Boser, Guyon and Vapnik, 1992), showed that a rather old
trick (Aizerman, 1964) can be used to accomplish this in an astonishingly straightforward
way. First notice that the only way in which the data appears in the training problem, Eqs.
(43) - (45), is in the form of dot products, xi · xj . Now suppose we first mapped the data
to some other (possibly infinite dimensional) Euclidean space H, using a mapping which we
will call Φ:

Φ : Rd "→ H. (59)

Then of course the training algorithm would only depend on the data through dot products
in H, i.e. on functions of the form Φ(xi) · Φ(xj). Now if there were a “kernel function” K
such that K(xi,xj) = Φ(xi) ·Φ(xj), we would only need to use K in the training algorithm,
and would never need to explicitly even know what Φ is. One example is
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2. Nonlinear SVMs

SVM with Kernels

Polynomial kernel with degree 3

21

4.3. Some Examples of Nonlinear SVMs

The first kernels investigated for the pattern recognition problem were the following:

K(x,y) = (x · y + 1)p (74)

K(x,y) = e−∥x−y∥2/2σ2

(75)

K(x,y) = tanh(κx · y − δ) (76)

Eq. (74) results in a classifier that is a polynomial of degree p in the data; Eq. (75) gives
a Gaussian radial basis function classifier, and Eq. (76) gives a particular kind of two-layer
sigmoidal neural network. For the RBF case, the number of centers (NS in Eq. (61)),
the centers themselves (the si), the weights (αi), and the threshold (b) are all produced
automatically by the SVM training and give excellent results compared to classical RBFs,
for the case of Gaussian RBFs (Schölkopf et al, 1997). For the neural network case, the
first layer consists of NS sets of weights, each set consisting of dL (the dimension of the
data) weights, and the second layer consists of NS weights (the αi), so that an evaluation
simply requires taking a weighted sum of sigmoids, themselves evaluated on dot products of
the test data with the support vectors. Thus for the neural network case, the architecture
(number of weights) is determined by SVM training.

Note, however, that the hyperbolic tangent kernel only satisfies Mercer’s condition for
certain values of the parameters κ and δ (and of the data ∥x∥2). This was first noticed
experimentally (Vapnik, 1995); however some necessary conditions on these parameters for
positivity are now known14.

Figure 9 shows results for the same pattern recognition problem as that shown in Figure
7, but where the kernel was chosen to be a cubic polynomial. Notice that, even though
the number of degrees of freedom is higher, for the linearly separable case (left panel), the
solution is roughly linear, indicating that the capacity is being controlled; and that the
linearly non-separable case (right panel) has become separable.

Figure 9. Degree 3 polynomial kernel. The background colour shows the shape of the decision surface.

Finally, note that although the SVM classifiers described above are binary classifiers, they
are easily combined to handle the multiclass case. A simple, effective combination trains

Linearly separable
Classifier almost linear
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Finally, note that although the SVM classifiers described above are binary classifiers, they
are easily combined to handle the multiclass case. A simple, effective combination trains

Not linearly separable
(in original space)
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2. Nonlinear SVMs

Constructing Kernels

So far we identified some linear transformation φ (x) that we
think will be useful

Then we find a kernel K
(
xi, xj

)
that allows us to compute the

scalar product without making the mapping explicit

K
(
xi, xj

)
= φ (xi)ᵀ φ

(
xj
)

What do kernels do?
They measure similarity (in a transformed space)

But what if we have a notion of similarity and want to encode this
in a kernel function K (xi, xj) directly?
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2. Nonlinear SVMs

Radial Basis Functions

Radial Basis Function (RBF) kernel

K (x, y) = exp

(
−‖x− y‖

2

2σ2

)

Measures similarity between x and y

Interesting property: H is infinite dimensional
Intuition given by Taylor series expansion

ex = 1+
x
1!

+
x2

2!
+ . . .+

xn

n!
+ . . .

Since we only use the kernel function, it is not a problem

But the hyperplane also has infinite VC-dimension!
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2. Nonlinear SVMs

Radial Basis Function Kernel
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2. Nonlinear SVMs

VC-Dimension for RBF Kernel

Intuition: If we can make the radius of the kernel arbitrarily
small, then at some point every data point will have its “own”
kernel

But in contrast: If we bound the radius of the RBF, we can limit
the VC-dimension!
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2. Nonlinear SVMs

Kernels

Question: Is the Gaussian RBF kernel a valid kernel, i.e., is there
a mapping {H, φ} so that

K (x, y) = φ (x)ᵀ φ (y) with φ : Rd → H

How can we assess this more generally?

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 37 / 59



2. Nonlinear SVMs

Mercer’s Condition

A function K (x, y) is a valid kernel, if for every g (x) with∫
g (x)2 dx <∞

it holds that ∫ ∫
K (x, y) g (x) g (y) dxdy ≥ 0
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2. Nonlinear SVMs

Kernels satisfying Mercer’s condition

Inhomogeneous polynomial kernel

K (x, y) = (xᵀy+ c)d

Can also represent polynomials of degree d

Gaussian RBF kernel

K (x, y) = exp

(
−‖x− y‖

2

2σ2

)

Hyperbolic tangent kernel

K (x, y) = tanh (axᵀy+ b)
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2. Nonlinear SVMs

Combining Kernels

It may not be always easy to check if Mercer’s condition is
satisfied, but it is possible to construct new kernels out of known
ones

If K1 (x, y) and K2 (x, y) are valid kernels, then so are

cK1 (x, y)
K1 (x, y) + K2 (x, y)
K1 (x, y)K2 (x, y)
f (x)K1 (x, y) f (y)
. . .
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2. Nonlinear SVMs

Non-separable data

What if the data is not linearly separable?

Simple solution: transform the features into a space so that they
become linearly separable

E.g. RBF kernel with small kernel radius

Problem: such a classifier will have a very high VC-dimension,
and thus has a large capacity

It will lead to overfitting

Solution: allow for data points to “violate the margin”
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2. Nonlinear SVMs

SVMs with slack

Instead of requiring that the data is perfectly linearly separable

wᵀxi + b ≥ +1 for yi = +1
wᵀxi + b ≤ −1 for yi = −1

Allow for small violations ξi from perfect separation

wᵀxi + b ≥ +1− ξi for yi = +1
wᵀxi + b ≤ −1+ ξi for yi = −1

ξi ≥ 0 ∀i
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2. Nonlinear SVMs

SVMs with slack

We require that

yi (wᵀxi + b) ≥ 1− ξi, ξi ≥ 0 ∀i

ξi are called slack variables

y = 1

y = 0

y = �1

⇠ > 1

⇠ < 1

⇠ = 0

⇠ = 0
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2. Nonlinear SVMs

SVMs with slack

We have to penalize the deviations

argmin
w,b

1
2
‖w‖2 + C

N∑
i=1

ξi

s.t. yi (wᵀxi + b)− 1+ ξi ≥ 0
ξi ≥ 0

Maximize the margin while minimizing the penalty for all data
points that are not outside the margin

The weight C allows us to specify a trade-off. Typically
determined through cross-validation

Even if the data is separable, it may be better to allow for an
occasional penalty
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2. Nonlinear SVMs

SVMs with slack

Dual formulation

max L̃ (α) =
N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyj
(
xTj xi

)
s.t. 0 ≤ αi ≤ C

N∑
i=1

αiyi = 0

where αi ≤ C is called box constraint

The separating hyperplane is given by the NS support vectors

w =

NS∑
i=1

αiyixi
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3. Applications

Text Classification

Joachims, T., Text categorization with Support Vector Machines:
learning with many relevant features, EMCL 1998

Problem: Classify documents into a number of categories

The text is represented using word statistics, i.e. histograms of
the word frequency

We count how often every word occurs and ignore their order
(“bag of words”)

Very high-dimensional feature space (roughly 10,000 dimensions)

Very few features that are not relevant (difficult to apply feature
selection or dimensionality reduction)
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3. Applications

Text Classification
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3. Applications

Handwritten Digit Classification

U.S. Postal Service Database
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3. Applications

Handwritten Digit Classification

Human performance: 2.5% error

Various learning algorithms
16.2%:

5.9%: 2-layer neural network

5.1%: LeNet 1 - 5-layer neural network

Various SVM results
4.0%: Polynomial kernel (p = 3, 274 support vectors)

4.1%: Gaussian kernel (σ = 0.3, 291 support vectors)
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3. Applications

Handwritten Digit Classification

Very little overfitting and good generalization
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3. Applications

Handwritten Digit Classification

To get even better results
Supply knowledge about invariances in the data: geometric
deformations, etc.

2.7% error: elastic matching (no learning)
Use knowledge of how digits can deform

Classify test digit by finding the template that required
least deformation

Recent results
With more training data, better modeling of invariances, etc.

Error down to about 0.5% with SVMs and 0.4% with neural
networks
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3. Applications

(Lack of) Sparseness

If the classes overlap, SVMs may need many support vectors
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3. Applications

Relevance Vector Machines

Probabilistic alternative to SVMs

Much sparser results

No notion of margin maximization
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3. Applications

Support Vector Regression

SVMs can also be adapted to regression tasks
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4. Wrap-Up

4. Wrap-Up

You know now
What the main idea behind SVMs is

Why maximizing the margin is a good idea

How to translate the SVM problem into a quadratic optimization
problem

How to interpret the support vectors

How to use SVMs for data that is not linearly separable

What the kernel trick is

How to construct kernels

How to formulate SVMs with slack variables
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4. Wrap-Up

Self-Test Questions

How did learning theory motivate support vector machines?

What does maximum margin separation mean?

Why did the SVM-craze drown the Neural-Networks-craze?

What is a Kernel?

How does a Kernel relate to features?

How can I build Kernels from Kernels?

What functions does the Radial Basis Function Kernel contain?

How does support vector regression work?
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4. Wrap-Up

Homework

Reading Assignment for next lecture
Bishop 6.1, 6.3, 6.4

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 59 / 59


	From Structural Risk Minimization to Linear SVMs
	Nonlinear SVMs
	Applications
	Wrap-Up

