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Today’s Objectives

Make you understand how to learn a continuous function

Covered Topics
Linear Regression and its interpretations

What is overfitting?

Deriving Linear Regression from Maximum Likelihood Estimation

Bayesian Linear Regression
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1. Introduction to Linear Regression

2. Maximum Likelihood Approach to Regression

3. Bayesian Linear Regression

4. Wrap-Up
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1. Introduction to Linear Regression

Reminder

Our task is to learn a mapping f from input to output

f : I→ O, y = f (x; θ)

Input: x ∈ I (images, text, sensor measurements, ...)

Output: y ∈ O

Parameters: θ ∈ Θ (what needs to be “learned”)

Regression
Learn a mapping into a continuous space

O = R

O = R3

. . .
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1. Introduction to Linear Regression

Motivation

You want to predict the torques of a
robot arm

y = Iq̈− µq̇+mlg sin (q)
=
[
q̈ q̇ sin(q)

] [
I −µ mlg

]ᵀ
= φ (x)ᵀ θ

Can we do this with a data set?

D =
{
(xi, yi)

∣∣∣ i = 1 · · · n
}

A linear regression problem!
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1. Introduction to Linear Regression

Least Squares Linear Regression

We are given pairs of training data points and associated
function values (xi, yi)

X =
{
x1 ∈ Rd, . . . , xn

}
Y = {y1 ∈ R, . . . , yn}

Note: here we only do the case yi ∈ R. In general yi can have
more than one dimension, i.e., yi ∈ Rf for some positive f

Start with linear regressor

xᵀi w+ w0 = yi ∀i = 1, . . . , n

One linear equation for each training data point/label pair

Exactly the same basic setup as for least-squares classification!
Only the values are continuous
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1. Introduction to Linear Regression

Least Squares Linear Regression

xᵀi w+ w0 = yi ∀i = 1, . . . , n

Step 1: Define

x̂i =

(
xi
1

)
ŵ =

(
w
w0

)

Step 2: Rewrite
x̂ᵀi ŵ = yi ∀i = 1, . . . , n

Step 3: Matrix-vector notation

X̂ᵀŵ = y

where X̂ = [x̂1, . . . , x̂n] (each x̂i is a vector) and y = [y1, . . . , yn]
ᵀ
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x̂ᵀi ŵ = yi ∀i = 1, . . . , n

Step 3: Matrix-vector notation

X̂ᵀŵ = y
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1. Introduction to Linear Regression

Least Squares Linear Regression

Step 4: Find the least squares solution

ŵ = arg min
w

∥∥∥X̂ᵀw− y∥∥∥2
∇w
∥∥∥X̂ᵀw− y∥∥∥2 = 0

ŵ =
(
X̂X̂ᵀ

)−1
X̂y

A closed form solution!
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1. Introduction to Linear Regression

Least Squares Linear Regression

ŵ =
(
X̂X̂ᵀ

)−1
X̂y

Where is the costly part of this computation?

The inverse is a RD×D matrix

Naive inversion takes O
(
D3
)
, but better methods exist

What can we do if the input dimension D is too large?
Gradient descent

Work with fewer dimensions
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1. Introduction to Linear Regression

Mechanical Interpretation
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1. Introduction to Linear Regression

Geometric Interpretation

Predicted outputs are Linear Combinations of Features! Samples
are projected in this Feature Space
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1. Introduction to Linear Regression

Polynomial Regression

How can we fit arbitrary polynomials using least-squares
regression?

We introduce a feature transformation as before

y (x) = wᵀφ (x)

=
M∑
i=0

wiφi (x)

Assume φ0 (x) = 1

φi (.) are called the basis functions

Still a linear model in the parameters w

E.g. fitting a cubic polynomial

φ (x) =
(
1, x, x2, x3

)ᵀ
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1. Introduction to Linear Regression

Polynomial Regression

Polynomial of degree 0 (constant value)
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1. Introduction to Linear Regression

Polynomial Regression

Polynomial of degree 1 (line)
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1. Introduction to Linear Regression

Polynomial Regression

Polynomial of degree 3 (cubic)
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1. Introduction to Linear Regression

Polynomial Regression

Polynomial of degree 9
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Massive overfitting
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2. Maximum Likelihood Approach to Regression

Outline

1. Introduction to Linear Regression

2. Maximum Likelihood Approach to Regression

3. Bayesian Linear Regression

4. Wrap-Up
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2. Maximum Likelihood Approach to Regression

Overfitting

Relatively little data leads to
overfitting

0 1

−1

0

1

Enough data leads to a good
estimate

0 1

−1

0

1
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2. Maximum Likelihood Approach to Regression

Probabilistic Regression

Assumption 1: Our target function values are generated by
adding noise to the function estimate

y = f (x,w) + ε

y - target function value; f - regression function; x - input value;
w - weights or parameters; ε - noise

Assumption 2: The noise is a random variable that is Gaussian
distributed

ε ∼ N
(
0, β−1)

p
(
y
∣∣∣ x,w, β) = N

(
y
∣∣∣ f (x,w) , β−1

)
f (x,w) is the mean; β−1 is the variance (β is the precision)

Note that y is now a random variable with underlying probability
distribution p

(
y
∣∣∣ x,w, β)
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2. Maximum Likelihood Approach to Regression

Probabilistic Regression
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2. Maximum Likelihood Approach to Regression

Probabilistic Regression

Given
Training input data points X = [x1, . . . , xn] ∈ Rd×n

Associated function values Y = [y1, . . . , yn]
ᵀ

Conditional likelihood (assuming the data is i.i.d.)

p
(
y
∣∣∣X,w, β) =

n∏
i=1

N
(
yi
∣∣∣ f (xi,w) , β−1

)
(with linear model)

=
n∏
i=1

N
(
yi
∣∣∣wᵀφ (xi) , β−1

)
wᵀφ (xi) is the generalized linear regression function

Maximize the likelihood w.r.t. (with respect to) w and β
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2. Maximum Likelihood Approach to Regression

Maximum Likelihood Regression

Simplify using the log-likelihood

log p
(
y
∣∣∣X,w, β) =

n∑
i=1

logN
(
yi
∣∣∣wᵀφ (xi) , β−1

)
=

n∑
i=1

[
log

( √
β√
2π

)
− β

2
(yi − wᵀφ (xi))2

]

=
n
2

log β − n
2

log (2π)− β

2

n∑
i=1

(yi − wᵀφ (xi))2

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 23 / 55



2. Maximum Likelihood Approach to Regression

Maximum Likelihood Regression

Gradient w.r.t. w

∇w log p
(
y
∣∣∣X,w, β) = 0

−β
n∑
i=1

(yi − wᵀφ (xi))φ (xi) = 0

Define

y =

 y1...
yn

 , w =

 w1...
wn

 , Φ =

 | |
φ (x1) . . . φ (xn)
| |


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2. Maximum Likelihood Approach to Regression

Maximum Likelihood Regression

n∑
i=1

yiφ (xi) =

[
n∑
i=1

φ (xi)φ (xi)ᵀ
]
w

Φy = ΦΦᵀw
wML = (ΦΦᵀ)−1 Φy

The same result as in least squares regression!
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2. Maximum Likelihood Approach to Regression

Maximum Likelihood Regression

We obtain the same w as with least squares regression
Least-squares is equivalent to assuming the targets are Gaussian
distributed

Note: The least squares method is not distribution-free!

However, the Maximum Likelihood approach is much more
powerful!

We can also estimate β

βML =

(
1
n

n∑
i=1

(
yi − wᵀ

MLφ (xi)
)2)−1

We can gauge the uncertainty of our estimate!
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2. Maximum Likelihood Approach to Regression

Loss Functions in Regression

Given a new data point xt , in least squares regression the
function value is yt = x̂tᵀŵ

But in maximum likelihood regression we have a probability
distribution over the function value p

(
y
∣∣∣ x,w, β)

How do we actually estimate a function value yt for a new data
point xt?

We need a loss function, just as in the classification case

L : R× R → R+

(yt, f (xt)) → L (yt, f (xt))
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2. Maximum Likelihood Approach to Regression

Loss Functions in Regression

Minimize the expected loss

Ex,y∼p(x,y) [L] =

∫ ∫
L (y, f (x)) p (x, y) dxdy

Simplest case: squared loss

L (y, f (x)) = (y − f (x))2

Ex,y∼p(x,y) [L] =

∫ ∫
(y − f (x))2 p (x, y) dxdy

∂E [L]

∂f (x)
= −2

∫
(y − f (x)) p (x, y) dy = 0∫

yp (x, y)dy = f (x)

∫
p (x, y) dy
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2. Maximum Likelihood Approach to Regression

Loss Functions in Regression

∫
yp (x, y) dy = f (x)

∫
p (x, y) dy∫

yp (x, y) dy = f (x) p (x)

f (x) =

∫
y
p (x, y)

p (x)
dy =

∫
yp (y | x) dy

f (x) = Ey∼p(y|x) [y] = E
[
y
∣∣∣ x]

Under squared loss, the optimal regression function is the mean
E
[
y
∣∣∣ x] of the posterior p (y | x)

It is also called mean prediction
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2. Maximum Likelihood Approach to Regression

Loss Functions in Regression

For our generalized linear regression function

f (x) =

∫
yN

(
y
∣∣∣wᵀφ (x) , β−1

)
dy = wᵀφ (x)
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2. Maximum Likelihood Approach to Regression

Probabilistic Regression
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3. Bayesian Linear Regression

Outline

1. Introduction to Linear Regression
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4. Wrap-Up

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 32 / 55



3. Bayesian Linear Regression

Avoiding Overfitting

Back to our original problem
We wanted to avoid overfitting and instabilities

Maximum likelihood also leads to overfitting (in the extreme case
think if you only had one data point)

What can we use to counter the problem?
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3. Bayesian Linear Regression

Bayesian Linear Regression

We place a prior on the parameters w to tame the instabilities

p
(
w
∣∣∣X, y) ∝ p(y ∣∣∣X,w)p (w)

Parameter prior: p (w)

Likelihood of targets under the data and parameters (as before):
p
(
y
∣∣∣X,w)

Posterior over the parameters: p
(
w
∣∣∣X, y)

Notice the VERY important difference: in this setting, you do not
get anymore a single value for the parameters, but rather a
probability distribution over the parameters
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3. Bayesian Linear Regression

Basic Idea: Prior controls the Model Class and
hence what Data Sets can be explained
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3. Bayesian Linear Regression

Bayesian Regression

Simple idea: Put a Gaussian prior on w

It will put a “soft” limit on the coefficients and thus avoid
instabilities

w ∼ p
(
w
∣∣∣α) = N

(
w
∣∣∣0, α−1I)

We use a zero mean Gaussian to keep the derivation compact, but
you can use another mean

Zero mean and spherical covariance (given by the diagonal
covariance matrix)

The posterior becomes

p
(
w
∣∣∣X, y, α, β) ∝ p(y ∣∣∣X,w, β) p(w ∣∣∣α)

∝ p
(
y
∣∣∣X,w, β)N (w ∣∣∣0, α−1I)
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3. Bayesian Linear Regression

Maximum A-Posteriori (MAP)

First attempt to solve this problem: estimate w by maximizing
the (log) posterior

log p
(
w
∣∣∣X, y, α, β) = log p

(
y
∣∣∣X,w, β)+ logN

(
w
∣∣∣0, α−1I

)
+ const

=
n∑
i=1

logN
(
yi
∣∣∣wᵀφ (xi) , β−1

)
+ logN

(
w
∣∣∣0, α−1I

)
+ const

= −β
2

n∑
i=1

(yi − wᵀφ (xi))2 − α

2
wᵀw+ const
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3. Bayesian Linear Regression

Maximum A-Posteriori (MAP)

∇w log p
(
w
∣∣∣X, y, α, β) = β

n∑
i=1

(yi − wᵀφ (xi))φ (xi)− αw = 0

β

n∑
i=1

yiφ (x) = β

[
n∑
i=1

φ (xi)φ (xi)ᵀ
]
w+ αw

β

n∑
i=1

yiφ (x) = β

[
n∑
i=1

φ (xi)φ (xi)ᵀ + α

]
w

βΦy = (βΦΦᵀ + αI)w

wMAP =

(
ΦΦᵀ +

α

β
I
)−1

Φy

What is the role of α/β in the expression?
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3. Bayesian Linear Regression

Maximum A-Posteriori (MAP)

wMAP =

(
ΦΦᵀ +

α

β
I
)−1

Φy

The prior has the effect that it regularizes the pseudo-inverse

Also called ridge regression

Intuition for the term "ridge", although these are
not the historical reasons : If there is multi-
collinearity, we get a "ridge" in the likelihood func-
tion. This in turn yields a long "valley" in the
RSS. Ridge regression "fixes" the ridge. It adds a
penalty that turns the ridge into a nice peak in
likelihood space.
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3. Bayesian Linear Regression

Maximum A-Posteriori (MAP) vs Regularized
Least-squares Linear Regression

There is another way to look at the MAP result

Let us add a regularization term to our objective from
Least-squares Linear Regression

ŵ = arg min
w

1
2

∥∥∥X̂ᵀw− y∥∥∥2 +
λ

2
‖w‖2

Solving for w we get a new estimate

ŵ =
(
X̂X̂ᵀ + λI

)−1
X̂y

where λ = α/β

When you place a regularizer λ in least-squares linear regression,
you are assuming the targets have Gaussian distributed noise,
but also that your parameters are Gaussian distributed
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3. Bayesian Linear Regression

Bayesian Regression

Polynomial of degree 9 with prior on w

λ = α/β controls the complexity of the model and determines
the degree of overfitting
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3. Bayesian Linear Regression

Bayesian Regression

[Bishop]
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3. Bayesian Linear Regression

Full Bayesian Regression

We can go further than MAP estimation

Observation: We do not actually need to know w, all we want to
do is to predict a function value based on the training data

Idea: “Remove” w by marginalizing over it

p
(
yt
∣∣∣ xt,X, y) =

∫
p
(
yt,w

∣∣∣ xt,X, y) dw
yt - predicted value; xt - test input; X - training data points; y -
training function values
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3. Bayesian Linear Regression

Full Bayesian Regression

p
(
yt
∣∣∣ xt,X, y)︸ ︷︷ ︸

predictive distribution

=

∫
p
(
yt,w

∣∣∣ xt,X, y) dw
=

∫
p
(
yt
∣∣∣w, xt,X, y) p(w ∣∣∣ xt,X, y) dw

=

∫
p
(
yt
∣∣∣w, xt)︸ ︷︷ ︸

regressionmodel

p
(
w
∣∣∣X, y)︸ ︷︷ ︸

posterior distribution

dw

For Gaussian distributions, this can be done in closed form,
leading to so-called Gaussian Processes
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3. Bayesian Linear Regression

Full Bayesian Regression

We can also do that in closed form: integrate out all possible
parameters

p
(
y∗
∣∣∣ x∗,X, y) =

∫
p
(
y∗
∣∣∣ x∗, θ)︸ ︷︷ ︸

likelihood

p
(
θ
∣∣∣X, y)︸ ︷︷ ︸

parameter posterior

dθ

y∗ - predicted value; x∗ - test input; X, y - training data

The predictive distribution is again a Gaussian

p
(
y∗
∣∣∣ x∗,X, y) = N

(
y∗
∣∣∣µ (x∗) , σ2 (x∗)

)
µ (x∗) = φT (x∗)

(
α

β
I+ ΦΦᵀ

)−1

Φᵀy

σ2 (x∗) =
1
β

+ φᵀ (x∗) (αI+ βΦΦᵀ)−1 φ (x∗)

The variance is state dependent
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3. Bayesian Linear Regression

Bayesian (Linear) Regression
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3. Bayesian Linear Regression

Gaussian Processes - Quick Preview

Essentially Kernelized Bayesian Ridge Regression is equivalent
to Gaussian Processes. We will not cover them now, but here is a
quick preview of what they can do

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 50 / 55
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Gaussian Processes - Quick Preview
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4. Wrap-Up

Outline

1. Introduction to Linear Regression

2. Maximum Likelihood Approach to Regression

3. Bayesian Linear Regression

4. Wrap-Up
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4. Wrap-Up

4. Wrap-Up

You know now:
How to formulate a linear regression problem

The different methods to perform linear regression:
least-squares, maximum likelihood and bayesian

Derive the equations for the parameters using the different
methods

Why introducing a prior distribution over the parameters can
combat overfitting
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4. Wrap-Up

Self-Test Questions

What is regression (in general) and linear regression (in
particular)?

What is the cost function of regression and how can I interpret it?

What is overfitting?

How can I derive a Maximum-Likelihood Estimator for
Regression?

Why are Bayesian methods important?

What is MAP and how is it different to full Bayesian regression?
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4. Wrap-Up

Homework

Reading Assignment for next lecture
Murphy ch. 8

Bishop ch. 4
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