
Mixed Sum-Product Networks: A Deep Architecture for Hybrid Domains

Alejandro Molina∗

alejandro.molina@tu-dortmund.de
TU Dortmund, Germany

Antonio Vergari*

antonio.vergari@uniba.it
University of Bari, Italy

Nicola Di Mauro
nicola.dimauro@uniba.it
University of Bari, Italy

Sriraam Natarajan
natarasr@indiana.edu

Indiana University, USA

Floriana Esposito
floriana.esposito@uniba.it
University of Bari, Italy

Kristian Kersting
kersting@cs.tu-darmstadt.de

TU Darmstadt, Germany

Abstract

While all kinds of mixed data—from personal data, over
panel and scientific data, to public and commercial data—are
collected and stored, building probabilistic graphical models
for these hybrid domains becomes more difficult. Users spend
significant amounts of time in identifying the parametric form
of the random variables (Gaussian, Poisson, Logit, etc.) in-
volved and learning the mixed models. To make this diffi-
cult task easier, we propose the first trainable probabilistic
deep architecture for hybrid domains that features tractable
queries. It is based on Sum-Product Networks (SPNs) with
piecewise polynomial leaf distributions together with novel
nonparametric decomposition and conditioning steps using
the Hirschfeld-Gebelein-Rényi Maximum Correlation Coef-
ficient. This relieves the user from deciding a-priori the para-
metric form of the random variables but is still expressive
enough to effectively approximate any distribution and per-
mits efficient learning and inference. Our experiments show
that the architecture, called Mixed SPNs, can indeed capture
complex distributions across a wide range of hybrid domains.

Introduction
Machine learning has achieved considerable successes in re-
cent years, and an ever-growing number of disciplines rely
on it. Data is now ubiquitous, and there is great value in
understanding the data, building probabilistic models and
making predictions with them. However, in most cases, this
success crucially relies on the data scientists to posit the
right parametric form of the probabilistic model underlying
the data, to select a good algorithm to fit their data, and fi-
nally to perform inference on it. These can be quite chal-
lenging even for experts and often go beyond non-experts’
capabilities, specifically in hybrid domains, consisting of
mixed—continuous, discrete and/or categorical—statistical
types. Building a probabilistic model that is both expres-
sive enough to capture complex dependencies among ran-
dom variables of different types as well as allows for effec-
tive learning and efficient inference is still an open problem.

More precisely, most existing graphical models for hy-
brid domains—also called mixed models—are limited to
particular combinations of variables of parametric forms

∗Contributed equally
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

such as the Gaussian-Ising mixed model (Lauritzen and
Wermuth 1989), where there are Gaussian and multinomial
random variables, and the continuous variables are condi-
tioned on all configurations of the discrete variables. Un-
fortunately, inference in this Gaussian-Ising mixed graphi-
cal model scales exponentially with the number of discrete
variables, and only recently, 3-way dependencies have been
realized (Cheng et al. 2014). Therefore it is not surpris-
ing that hybrid Bayesian networks (HBNs) have restricted
their attention to simpler parametric forms for the condi-
tional distributions such as conditional linear Gaussian mod-
els (Heckerman and Geiger 1995). While extensions based
on copulas aim to provide more flexibility (Elidan 2010),
selecting the best parametric copula distribution for each
application requires significant engineering effort. Proba-
bly the most recent approach is Manichean graphical mod-
els (Yang et al. 2014), and we refer to this paper for an
excellent and current overview of mixed graphical mod-
els. Manichean models specify that each of the conditional
distributions is a member of a possibly different univari-
ate exponential family. Although indeed more flexible than
Gaussian-Ising mixed models, Manichean models are still
demanding, in particular when it comes to inference. Alter-
natively, one may make a piecewise approximation to con-
tinuous distributions (Shenoy and West 2011). In their purest
form, piecewise constant functions are often adopted in the
form of histograms or staircase functions, and more expres-
sive approximations comprise mixtures of truncated poly-
nomials (Langseth et al. 2012) and exponentials (Moral,
Rumi, and Salmerón 2001). This has resulted in a num-
ber of novel inference approaches for hybrid domains (San-
ner and Abbasnejad 2012; Belle, Passerini, and Van den
Broeck 2015; Belle, Van den Broeck, and Passerini 2015;
Morettin, Passerini, and Sebastiani 2017). Although expres-
sive, learning these non-parametric models does not scale.

To overcome the difficultness of mixed probabilis-
tic graphical modeling and inspired by the successes of
deep models, we introduce Mixed Sum-Product Networks
(MSPNs). They are a general class of mixed probabilistic
models that, by combining Sum-Product Networks (Poon
and Domingos 2011) and piecewise polynomials, allow for
a broad range of exact and tractable inference without mak-
ing distributional assumptions. Learning MSPNs from data,
however, requires different decomposition and conditioning

steps for Sum-Product Networks (SPNs) tailored towards
nonparametric distributions. Providing them based on the
Rényi Maximum Correlation Coefficient (Lopez-Paz, Hen-
nig, and Schölkopf 2013)—the first application of it to learn-
ing sum-product networks—via a series of variable transfor-
mations is our main technical contribution. This then natu-
rally results in the first automated tool for learning multi-
variate distributions over hybrid domains without requiring
users to decide the parametric form of random variables or
their dependencies, yet enabling them to answer complex
probabilistic queries efficiently on tasks previously unfeasi-
ble by classical mixed models.

We proceed as follows. We start off by reviewing SPNs.
Afterwards, we introduce MSPNs and show how to learn
tree-structured MSPNs from data using the Rényi Maximum
Correlation Coefficient. Before concluding, we present our
experimental evaluation.

Sum-Product Networks (SPNs)
Recent years have seen a significant interest in tractable
probabilistic representations such as Arithmetic Circuits
(ACs), see (Choi and Darwiche 2017) for a discussion. In
particular, SPNs, an instance of ACs, are deep probabilis-
tic models that can represent high-treewidth models (Zhao,
Melibari, and Poupart 2015) and facilitate exact inference
for a range of queries in time polynomial in the network size
(Poon and Domingos 2011; Bekker et al. 2015).

Definition of SPNs: Formally, an SPN is a rooted directed
acyclic graph, comprising sum, product or leaf nodes. The
scope of an SPN is the set of random variables appearing on
the network. An SPN can be defined recursively as follows:
(1) a tractable univariate distribution is an SPN; (2) a prod-
uct of SPNs defined over different scopes is an SPN; and
(3), a convex combination of SPNs over the same scope is
an SPN. Thus, a product node in an SPN represents a factor-
ization over independent distributions defined over different
random variables, while a sum node stands for a mixture
of distributions defined over the same variables. From this
definition, it follows that the joint distribution modeled by
such an SPN is a valid probability distribution, i.e., each
complete and partial evidence inference query produces
a consistent probability value (Poon and Domingos 2011;
Peharz et al. 2015). This also implies that we can construct
multivariate distributions from simpler univariate ones. Fur-
thermore, any node in the network could be replaced by any
tractable multivariate distribution over the same scope, ob-
taining still a valid SPN.

Tractable Inference in SPNs: To answer probabilis-
tic queries in an SPN, we evaluate the nodes starting at
the leaves. Given some evidence, the probability output of
querying leaf distributions is propagated bottom up. For
product nodes, the values of the children nodes are multi-
plied and propagated to their parents. For sum nodes, in-
stead, we sum the weighted values of the children nodes. The
value at the root indicates the probability of the asked query.
To compute marginals, i.e., the probability of partial config-
urations, we set the probability at the leaves for those vari-
ables to 1 and then proceed as before. Conditional probabil-
ities can then be computed as the ratio of partial configura-

tions. To compute MPE states, we replace sum by max nodes
and then evaluate the graph first with a bottom-up pass, but
instead of weighted sums, we pass along the weighted max-
imum value. Finally, in a top-down pass, we select the paths
that lead to the maximum value, finding approximate MPE
states (Poon and Domingos 2011). All these operations tra-
verse the tree at most twice and therefore can be achieved in
linear time w.r.t. the size of the SPN.

Learning SPNs: While it is possible to craft a valid SPN
structure by hand, doing so would require domain knowl-
edge and weight learning afterwards (Poon and Domingos
2011). Here, we focus on a top-down approach (Gens and
Domingos 2013) that directly learns both the structure and
weights of (tree) SPNs at once.

It uses three steps: (1) base case, (2) decomposition and
(3) conditioning. In the base case, if only one variable re-
mains, the algorithm learns a univariate distribution and ter-
minates. In the decomposition step, it tries to partition the
variables into independent components Vj ⊂ V such that
P (V) =

∏
j P (Vj) and recurses on each component, in-

ducing a product node. If both the base case and the de-
composition step are not applicable, then training samples
are partitioned into clusters (conditioning), inducing a sum
node, and the algorithm recurses on each cluster.

This scheme for learning tree SPNs has been instantiated
for several well-known distributions with parametric forms.
Conditioning for Gaussians can be realized using hard clus-
tering with EM or K-means (Gens and Domingos 2013;
Rooshenas and Lowd 2014). For Poissons, mixtures of
Poisson Dependency Networks have been proven success-
ful (Molina, Natarajan, and Kersting 2017). For the decom-
position step, one typically employs pairwise independence
tests with some associated independence score ρ. For cate-
gorical variables, Gens and Domingos (2013) proposed to
use the G-test, and Rooshenas and Lowd (2014) a pair-
wise mutual information test. For variables of the general-
ized linear model family, Molina et al. (2017) proposed the
use of parameter instability tests based on generalized M-
fluctuation processes. Then, one creates an undirected graph
where there is an edge between random variables Vi and Vj
if the value ρ(Vi, Vj) passes a threshold of significance α.
That is, the decomposition step equals to partitioning the
graph into its connected components. It is rejected if there
is only a single connected component.

Mixed Sum-Product Networks (MSPNs)
Unfortunately, all previous decomposition and condition-
ing approaches for SPNs are only suitable for multivari-
ate distributions of known parametric form: categorical,
binomial, Gaussian and Poisson distributions (Poon and
Domingos 2011; Vergari, Di Mauro, and Esposito 2015;
Molina, Natarajan, and Kersting 2017). To model hybrid do-
mains without making parametric assumptions, one has to
introduce new conditioning and decomposition approaches
tailored towards mixed models.

Rényi Decomposition: We approach the problem of
seeking independent subsets of random variables of mixed
but unknown types as a dependency discovery problem. Al-

× ×

λx
1 λy

2 λx
3 λy

4

0.3 0.7

Pλ1(x) =

0.2, if x = 0

0.3, if x = 1

0.5, if x = 2

pλ2(y) =

3y + 1, if y ≤ 0
1
2
y + 1, if 0 < y ≤ 1

. . .

0.001, if y > 5

Pλ3(x) =

0.15, if x = 0

0.81, if x = 1

0.04, if x = 2

pλ4(y) =

2y2 + 5y + 1
2
, if y ≤ 1

1
2
y2 + 5, if 1 < y ≤ 2

. . .

0.001, if y > 10 0 500 1000 1500 20000.000

0.002

0.004
PWL, =0.1
PWL, =1.0
PWL, =5.0
Gaussian

0 10 20 300.00
0.05
0.10
0.15
0.20

Figure 1: Mixed Sum-Product Networks (MSPNs). From left to right: (left) An MSPN representing a mixture over random
variables x (discrete) and y (continuous). (middle) In each leaf λi an MSPN approximates the univariate distribution as a
piecewise polynomial. In our experiments we employ piecewise linear models (right). Shown are fitted distributions on the UCI
Australian dataset, see experiment section. Shown are the empirical distributions (histograms), piecewise linear approximations
using isotonic regression (PWL) with different smoothing values (∆), and superimposed maximum likelihood Gaussians. This
shows that piecewise polynomials are expressive enough to effectively approximate continuous distributions, often better than
the classical Gaussian assumption. Within an MSPN, they permit efficient learning and inference. (Best viewed in color)

fred Rényi (1959) argued that a measure of maximum de-
pendence ρ∗ : Vi × Vj → [0, 1] between random vari-
ables Vi and Vj should satisfy several fundamental prop-
erties, such as symmetry, transformation invariance, and it
should also hold that ρ∗(Vi, Vj) = 0 iff Vi and Vj are
statistically independent. He also showed the Hirschfeld-
Gebelein-Renyi (HGR) Maximum Correlation Coefficient
due to Gebelein (1941) to satisfy all these properties. Re-
cently, Lopez-Paz, Hennig, and Schölkopf (2013) provided
a practical estimator for the HGR ρ∗, the randomized de-
pendency coefficient (RDC). The RDC is appealing for hy-
brid domains because it can be applied to both multivari-
ate, continuous and discrete random variables. Also, its
O(M logM) running time, with M being the number of in-
stances, makes it one of the fastest non-linear dependency
measures. The general idea behind the RDC is to look for
linear correlations between the representations of two ran-
dom samples that have undergone a series of non-linear
transformations. The two samples are deemed statistically
independent iff the transformed samples are linearly uncor-
related. This is the same reasoning behind the adoption of
higher space projections for the kernel-trick in classification
and the stacking of representations in deep architectures.

Specifically, consider two random samples DVi
=

{vmi |vmi ∼ Vi}Mm=1 and DVj
= {vmj |vmj ∼ Vj}Mm=1 drawn

from variables Vi and Vj , we decide that Vi and Vj are in-
dependent iff ρ(DVi ,DVj) = 0, where ρ is the RDC. In-
stead of operating directly on DVi and DVj , and in order to
achieve invariance against scaling and shifting data trans-
formations, we first compute their empirical copula trans-
formations (Póczos, Ghahramani, and Schneider 2012), CVi

and respectively CVj
, in the following way:

CVi
=

{
1

M

∑M

r=1
1{vri ≤ vmi }

∣∣∣∣vmi ∈ DVi

}M
m=1

(1)

Then, we apply a random linear projection on the obtained
samples to a k-dimensional space, finally passing them
through a non-linear function σ. We compute:

φ(CVi
) = σ(w · CTVi

+ b), (w, b) ∼ N (0k, sIk×k) (2)
for the first sample, an equivalent transformation yields
φ(CVj

). Note that w ∈ Rk×1, b ∈ R and that random sam-
pling w from a zero-mean k-dimensional Gaussian is anal-
ogous to the use of a Gaussian kernel (Rahimi and Recht

2009). We choose k = 20, σ to be sine function and s = 1
6

as both have proven to be reasonable empirical heuristics,
see (Lopez-Paz, Hennig, and Schölkopf 2013). Lastly, we
compute the canonical correlations (CCA) ρ2 for φ(CVi

) and
φ(CVj

) as the solutions for the following eigenproblem:(
0 Σ−1ii Σij

Σ−1jj Σji 0

)(
β
γ

)
= ρ2

(
β
γ

)
, (3)

where the covariance block matrices involved are:

Σij = cov(φ(CVi
), φ(CVj

)),Σji = cov(φ(CVj
), φ(CVi

)),

Σii = cov(φ(CVi
), φ(CVi

)),Σjj = cov(φ(CVj
), φ(CVj

)).

In the end, the actual value for the RDC coefficient is the
largest canonical correlation coefficient:

RDC(Vi, Vj) = supβ,γ ρ(βTφ(CVi), γ
Tφ(CVj)). (4)

This RDC pipeline goes through a series of data transfor-
mations, which constitutes the basis of our decomposition
procedure, cf. Alg. 1. We note that all the transformations
presented so far are easily generalizable to the multivari-
ate case (Lopez-Paz, Hennig, and Schölkopf 2013). We are
applying these multivariate versions both when performing
conditioning on multivariate samples (see below) and when
we deal with decomposing categorical random variables.
Since Eq. 1 is not well defined for categorical data, to treat
them in the same way as continuous and discrete data, we
proceed as follows. First we perform a one hot encoding
transformation for each categorical random variables Vc, ob-
taining a multivariate binary random variable BVc

. Then, we
apply Eq. 1 to each column BVc

independently, obtaining
the matrix CBVc

. This way we are preserving all the modali-
ties of Vc. Finally, we apply the generalized version of Eq. 2
and Eq. 3 to the multivariate case.

We are looking for the RDC to be zero in case of inde-
pendent random variables and apply thresholding approach
on the adjacency graph induced by dependencies (see the
previous section).

Rényi Conditioning: The task of clustering hybrid data
samples depends on the choice of the metric space, which in
turn, typically depends on the parametric assumptions made
for each variable. Consider e.g. the popular choice of K-
Means using the Euclidean metric. It makes a Gaussian as-
sumption and therefore is not principled for categorical data.

Algorithm 1 splitFeaturesRDC (D, α)

1: Input: samples D = {vm = (vm1 , . . . , v
m
N)|vm ∼

V}Mm=1 over a set of random variables V =
{V1, . . . , VN}; α: threshold of significance

2: Output: a feature partition {PD}
3: for each Vi ∈ V do

4: CVi
←
{

1
M

∑M
r=1 1{vri ≤ vmi }

∣∣∣∣vmi ∈ DVi

}M
m=1

5: (wi, bi) ∼ N (0k, sIk×k)
6: φ(CVi

)← sin(wi · CTVi
+ bi)

7: G ← Graph({})
8: for each Vi, Vj ∈ V do
9: ci,j ← CCA(φ(CVi

), φ(CVj
))

10: if ci,j > α then
11: G ← G ∪ {(i, j)}
12: return ConnectedComponents(G)

Algorithm 2 clusterSamplesRDC (D)

1: Input: samples D = {vm = (vm1 , . . . , v
m
N)|vm ∼

V}Mm=1 over a set of random variables V =
{V1, . . . , VN}

2: Output: a data partition {PD}

3: CVi
←
{

1
M

∑M
r=1 1{vri ≤ vmi }

∣∣∣∣vmi ∈ DVi

}M
m=1

4: (w, b) ∼ N (0s, sIk×k)
5: φ(CVi

)← sin(w · CTVi
+ b)

6: E ← {φ(CV1), . . . , φ(CVN
)}

7: return KMeans(E , 2)

To eliminate the reliance on knowing the type, we propose
to cluster multivariate hybrid samples after the RDC pipeline
has processed them. Not only does the series of non-linear
transformations produce a feature space in which clusters
may be more easily separable, but no distributional assump-
tions are required. More formally, given a set of samples D
over RVs V we split it into a sample partitioning PD =

{Dc}Cc=1,
⋃C
c=1DC = D, andDq∩Dr = ∅,∀Dq,Dr ∈ PD.

The weights for the convex combination on the sum nodes
are estimated as the proportions of the data belonging to
each cluster, i.e., wc = |Dc|

|D| . The procedure is sketched
in Alg. 2. First, we transform every feature Vi in D using
Eq 2: E = {φ(DVn)|DVn}Nn=1. Then, all our features are
projected into a new k-dimensional non-linear space. In this
new space, we can safely apply now K-Means to obtain c
clusters. In Alg. 2, we set c = 2 as this generally leads to
deeper networks (Vergari, Di Mauro, and Esposito 2015).

Nonparametric Univariate Leave Distributions: Fi-
nally, to be fully type agnostic, i.e., to realize MSPNs, we
adopt piecewise polynomial approximations of the univari-
ate leaf densities. The simplest and most straightforward ap-
proximation we consider are piecewise constant functions,
i.e. histograms. More precisely, we adopt the scheme pro-
posed in (Rozenholc, Mildenberger, and Gather 2010) of-

Algorithm 3 LearnMSPN (D, ∆, η, α)

1: Input: samples D = {vm = (vm1 , . . . , v
m
N)|vm ∼

V}Mm=1 over a set of random variables V =
{V1, . . . , VN}; η: minimum number of instances to split;
∆: histogram smoothing factor; α: threshold of signifi-
cance

2: Output: an MSPN S encoding a joint pdf over V
learned from D

3: if |V| = 1 then
4: {Dc}Cc=1 ← clusterSamplesRDC(D)
5: if C > 1 then
6: S ←∑C

i=1
|Dc|
|D| LearnMSPN(Dc,∆, η)

7: else
8: S ← LearnIsotonicLeaf(D,∆)

9: else if |D| < η then

10: S ←
|V|∏
n=1

LearnMSPN({vmn |vmn ∼ Vn}Mm=1,∆, η)

11: else
12: {Vc}Cc=1 ← splitFeaturesRDC(D, α)
13: if C > 1 then
14: Dc ← {vmc |vmc ∼ Vc}Mm=1

15: S ←∏C
c=1 LearnMSPN(Dc,∆, η)

16: else
17: {Dc}Cc=1 ← clusterSamplesRDC(D)

18: S ←∑C
i=1

|Dc|
|D| LearnMSPN(Dc,∆, η)

return S

fering an adaptive binning, i.e. with irregular intervals, that
is learned from data by optimizing a penalized likelihood
function. This allows MSPNs to model both multimodal and
skewed univariate distributions without further assumptions.
We apply Laplacian smoothing by a factor ∆ to cope with
unseen values and the natural overfitting of histograms.

Indeed, by increasing the degree of leaf polynomial ap-
proximations, one can favor more expressive models. To bal-
ance between the complexity of learning resp. inference and
expressiveness, however, we restrain to piecewise linear ap-
proximations. We reframe the unsupervised task of estimat-
ing the density of univariate leaf distributions into a super-
vised one by fitting a nonparametric unimodal distribution
function through isotonic regression (Frisen 1986), referred
to as LearnIsotonicLeaf. Once we have collected a set of
pairs of points, e.g. from the previously estimated histogram,
we employ them as labeled instances to fit a monotonically
increasing (resp. decreasing) piecewise linear function up to
(resp. down from) the estimated distribution mode. To cope
with this unimodality assumption we accommodate Learn-
MSPN, cf. Alg. 3, to grow a leaf only after no more cluster-
ing steps are possible, i.e. it is difficult if not impossible to
separate two modalities in the observed data. Note how iso-
tonic regression acts as an additional regularizer: to preserve
monotonicity, it does not fit exactly the data points, resulting
in a smoother piecewise function.

Now we have everything together to evaluate MSPNs em-
pirically. Before doing so, we would like to stress that we
here focused on a general setting. Instead of piecewise lin-

MSPN
Gower RDC

dataset HBNMMHC hist iso hist iso

anneal-U -42.647 -63.553 -38.836 -60.314 -38.312
australian -38.423 -18.513 -30.379 -17.891 -31.021
auto -71.530 -72.998 -69.405 -73.378 -70.066
balance-scale -7.483 -8.038 -7.045 -7.932 -7.302
breast -30.572 -34.027 -23.521 -34.272 -24.035
breast-cancer -9.193 -15.373 -9.500 -16.277 -9.990
cars -28.596 -30.467 -31.082 -29.132 -30.516
cleave -26.296 -26.132 -25.869 -25.707 -25.441
crx -34.563 -22.422 -31.624 -24.036 -31.727
diabetes -29.797 -15.286 -26.968 -15.930 -27.242
german -34.356 -40.828 -33.480 -38.829 -32.361
german-org -29.051 -43.611 -26.852 -37.450 -27.294
heart -28.519 -20.691 -26.994 -20.376 -25.906
iris -1.670 -3.616 -2.892 -3.446 -2.843

wins over HBNMMHC - 4/14 11/14 4/14 11/14
wins 3/14 11/14

Table 1: Average test set log likelihoods for UCI hybrid
datasets (the higher, the better). The best results are bold.
MSPNs win in 11 out of 14 cases, even without information
about the statistical types (RDC, iso). A Wilcoxon sign test
shows that this is significant (p = 0.05).

ear leaves, one can also employ existing hybrid densities as
leave distributions such as HBNs, mixtures of truncated ex-
ponential families, or other nonparametric density estima-
tors such as Kernel Density Estimators (KDEs) and even de-
noising and variational autoencoders.

Experimental Evaluation
We intend to investigate the benefits of MSPNs compared
to other mixed probabilistic models concerning accuracy
and flexibility of inference. Specifically, we investigate the
following questions: (Q1) Is the MSPN distribution flexi-
ble for hybrid domains? (Q2) How do MSPNs compare to
existing mixed models? (Q3) How do MSPNs compare to
state-of-the-art parametric models in a single-type domain?
(Q4) Can MSPNs effectively answer several inference query
types over hybrid domains? (Q5) Can we leverage MSPNs
for interpretability over hybrid domains, even via symbolic
computation? We implemented MSPNs1 in Python and R.

Hybrid UCI Benchmarks (Q1, Q2): We considered the
14 preprocessed UCI benchmarks from the MLC++ library2

listed in Table 1. The domains span from survey data to
medical and biological domains, and they contain both con-
tinuous, discrete and categorical variables in different pro-
portions. As a baseline density estimator, we considered
HBNs whose conditional dependencies are modeled as con-
ditional linear gaussians (Heckerman and Geiger 1995).
To learn their structure we explored both score-based and
constrained-based approaches, finding the Max-Min Hill-

1https://github.com/alejandromolinaml/MSPN
2https://www.sgi.com/tech/mlc/download.

html

Dirichlet, train points

1.59
0.05
1.69
3.33
4.97
6.62
8.26
9.90
11.54
13.18

SPN, train points

1.59
0.05
1.69
3.33
4.97
6.62
8.26
9.90
11.54
13.18

Figure 2: Simplex Distributions: Density of the topics span-
ning a 2-simplex from the NIPS dataset using (left) Dirichlet
and (right) MSPN distributions. The more flexible MSPN
distribution fits the topic distribution well and the lower-left
topic better. (Best viewed in color).

Climbing (MMHC) algorithm (Tsamardinos, Brown, and
Aliferis 2006) to perform the best on the holdout data. For
weight learning, we optimized the BDeu score. As an addi-
tional sanity check of our nonparametric RDC pipeline, we
also trained MSPNs employing K-Medoids using the Gower
distance (GowerMSPNs). The Gower distance (Gower and
Gower 1971) defines a metric over hybrid domains, at the
cost of making distributional assumptions for each variable
involved: take the average d(i, j)=(1/N)

∑N
n=1 d

n
i,j of dis-

tances dni,j per feature n. We assumed continuous variables
to be Gaussian and discrete ones to be binomial.

The results are summarized in Table 1. MSPNs clearly
outperform HBNs. Moreover, the performance of MSPNs
is comparable to GowerMSPNs, proving that using RDC is
a sensible idea and frees the user from making parametric
assumptions. Using histogram representations allows one to
capture mixtures, which turns out to be beneficial for some
datasets, but also results in a higher variance in performance
across datasets, showing the benefit of isotonic regression.
This answers (Q1, Q2) affirmatively.

Learning Simplex Distributions (Q3): We considered
data common in text and chemistry domains: proportional
data, i.e., data lying on the probability simplex, the values
are in [0, 1] and sum up to 1. The Dirichlet distribution is ar-
guably the most famous parametric distribution for this type
of data. Hence, we used it as a baseline.

First, we considered the NIPS corpus, containing 1,500
documents over the 100 most frequent words. We ran Latent
Dirichlet Allocation (LDA) (Blei 2012) with different num-
bers of topics (3,5,10,20,50) generating different data repre-
sentations. Fig. 2 shows that the MSPN accurately fits the
density, better than a Dirichlet. On NIPS, we also compared
MSPNS to Poisson SPNs (PSPNs) of Molina et al. (2017),
learning both models with η = 200. The average test log-
likelihood of MSPNs was better than PSPNs: -144.41 vs -
227.74. This proves how MSPNs are competitive to domain-
specific models.

Then, we investigated the Air Quality dataset3 contain-
ing 6,941 measurements for 12 features about air composi-

3https://archive.ics.uci.edu/ml/datasets/
Air+Quality. We used only complete instances and ignored
the time feature and C6H6

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

(a) (b) (c) (d)

Figure 3: Towards symbol grounding using MSPN. (a) On the top left, the decoded sample predicted for the visual code
{0, 0, 1, 0, 1, 1} (corresponding to a “3”), on the bottom left its training closest sample. On the right, decoded conditional
samples for the same visual code. (b,c) Decoded conditional samples for codes in between classes “3” and “5” ({0, 0, 1, 1, 1, 1})
as well as “1” and “5” ({1, 0, 1, 1, 1, 0}), respectively. (d) Some test images on the left and their MSPN reconstructions (left,
right, up, down) on the right. The reconstructed parts are denoted by a red background. (Best viewed in color)

Dimension Dirichlet MSPN(RDC,iso) MSPN(Grower,iso)

NIPS + LDA
3 2.045 (± 0.297) 4.071 (± 0.66) 4.333 (± 0.627)
5 7.311 (± 0.406) 10.376 (± 0.671) 10.419 (± 0.711)

10 25.047 (± 0.787) 35.927 (± 1.755) 34.205 (± 1.716)
20 69.668 (± 2.014) 109.222 (± 4.179) 92.981 (± 4.245)
50 245.008 (± 3.573) 338.477 (± 6.976) 349.259 (± 9.916)

Air Quality + Archetypes
3 2.939 (± 1.536) 5.852 (± 2.261) 7.114 (± 2.272)
5 14.625 (± 4.678) 16.494 (± 7.574) 15.099 (± 4.888)

10 61.317 (± 4.81) 84.124 (± 6.575) 85.645 (± 5.887)
20 174.171 (± 5.799) 232.075 (± 7.74) 242.482 (± 10.224)

Hydrochemicals
12 59.546 (± 1.781) 71.013 (± 3.591) 82.377 (± 1.445)

wins over Dir. - 10/10 10/10
wins 0/10 10/10

Table 2: Average test set log likelihoods (the higher, the bet-
ter) on proportional data; best results bold. Clearly, MSPNs
outperform the less flexible Dirichlet distribution, even with-
out information about the statistical type (RDC, iso). Posi-
tive values are due to continuous random variables.

tion. We ran Archetypal Analysis (Cutler and Breiman 1994;
Thurau et al. 2012) for 3, 5, and 10 archetypes and extracted
the convex reconstructions of the original data. We also
considered the hydro-chemical dataset of Tolosana-Delgado
et al. (2005), containing 485 observations of 14 chemical
measurements of a river. We fit MSPNs and the Dirich-
let over relative concentrations. The 10-fold cross-validated
mean log-likelihoods for all models on the three datasets
are summarized in Table 2. As one can see, in all cases
MSPNs can capture the distribution on the simplex better
than the Dirichlet. This is to be expected as MSPNs can cap-
ture more complex (in)dependencies, whereas the Dirichlet
makes stronger independence assumptions. All simplex ex-
periments together answer (Q3) affirmatively.

Leveraging symbolic-semantic information (Q4):
Symbol grounding is at the heart of AI, and we explored
MSPNs as a step towards tackling this classical AI problem.
We considered the 28×28 MNIST digit images, represented
as 16 continuous features extracted from an autoencoder
(AE) trained on the training split: we trained two layers

2 4 8 16 32 64
semantic code length

+0%

+5%

+10%

+15%

+20%

m
ar

gi
na

l l
og

-li
ke

lih
oo

d
re

la
tiv

e
im

pr
ov

em
en

t

hist
iso

2 4 8 16 32 64
semantic code length

+0%

+2%

+4%

ac
cu

ra
cy

re
la

tiv
e

im
pr

ov
em

en
t

hist
iso

Figure 4: Average relative improvement over ten trials (y
axis) for (left) the marginal test log-likelihood P (X) and
(right) for the class accuracy based on P (C) of MSPNs
learned an autoencodings augmented with semantic class
codes of increasing length (x axis). (Best viewed in color)

of 256 and 128 ReLU neurons for both the encoder and
the decoder for 200 epochs using adam (learning rate
0.002 with no decay, β1 and β2 coefficients set to 0.9
resp. 0.999). We then augmented MNIST with symbolic
semantic information encoded as binary codes. Each bit of
the code is 1 if a digit contains one of the following visual
features: (i) a vertical stroke (true for 1, 4 and 7), (ii) a circle
(0, 6, 8 and 9), (iii) a left curvy stroke (2, 3, 5, 8 and 9), (iv)
a right curvy stroke (5 and 6), (v) a horizontal stroke (7, 2, 3,
4, and 5), (vi) a double curve stroke (3 and 8). For instance,
images representing a “3” are encoded as (0, 0, 1, 0, 1, 1)
while (0, 0, 1, 1, 1, 0) corresponds to “5”. We also added
the class label C as a feature. Let X denote the continuous
embedding variables, Y the additional 6 binary symbolic
features, and C the categorical class variable.

In a first experiment, we trained an MSPN on a 10000
subsample of the augmented MNIST training data to model
P (X,Y), setting η = 200 and ∆ = 1, k = 20. Then, we
evaluated on the augmented MNIST test split whether the
learned MSPN had captured the non-explicit dependencies
between the three different feature domains. First, we pre-
dict x∗ = argmaxx P (x|Y = yc), for each visual code yc
belonging to class c ∈ C. Fig. 3 (a) visualizes the prediction
x∗ as decoded by the autoencoder back in pixel space. As
one can see, the MSPN is not only able to recover the cor-
rect class but also does not just memorize a training sample.

Conditional sampling provides an additional visual proof:
after propagating bottom-up the evidence for an observed
code yc, we sample a configuration x (applying Vergari, Di
Mauro, and Esposito’s (2016) top-down approach). Decoded
samples clearly belong to the class c, cf. Fig. 3 (a). Then, to
evaluate how good the MSPN was able to glue the contin-
uous and binary domains, we performed conditional sam-
pling starting from unseen visual codes. For instance, for
the code (0, 0, 1, 1, 1, 1), merging the visual codes for 3 and
5, we expect a digit in between the two classes. Fig. 3 (b)
confirms this: decoded samples belong to either class or are
closely in between them. Similarly, Fig. 3 (c) shows samples
conditioned on code {1, 0, 1, 1, 1, 0}, merging classes 5 and
1. Next, we investigated how much symbol groundings can
help density estimation and classification. On the MNIST
test split, we investigated the benefit of using visual codes
Y of length 2,4,8,16,32,64. We measured the improvement
of the marginal likelihood P (X) resp. the classification ac-
curacy based on P (C) of an MSPN B trained on (X,Y, C)
over an MSPN A trained only over (X, C): (`B − `A)/
`A · 100 for both measures `. The results are summarized
in Fig. 4. As one can see, increasing the number of sym-
bolic features positively improves both the marginal likeli-
hood over X and the classification performance. Note that
for computing P (X) and to predict c∗ = argmaxc P (c|X),
one has to marginalize over Y, which cannot be done effi-
ciently using classical mixed graphical models. Finally, we
employed MSPNs for MNIST reconstruction. We processed
the original images as two halves—left (l) and right (r), up
(u) and down (d)—and encoded each half into 16 continu-
ous features by learning one autoencoder independently for
each one of them. Note that each variable set Xl, Xr, Xu

and Xd forms a domain with a different distribution. We
learned MSPNs for P (Xl,Xr) and P (Xu,Xd) and per-
formed MPE inference to predict one half of a test image
given the other. Predicted samples are shown in Fig. 3 (d).
As one can see, the reconstructions are indeed very plausi-
ble. This suggests that MSPNs are a valuable tool to effec-
tively learn distributions and make predictions across dif-
ferent domains. The experiments on leveraging symbolic-
semantic information answer (Q4) affirmatively.

Mixed Mutual Information (Q5): Recall, an MSPN en-
codes a polynomial over leaf piecewise polynomials. Con-
sequently, one can employ a symbolic solver to evalu-
ate the overall network polynomial to efficiently compute
information-theoretic measures that would be difficult to
calculate otherwise, in particular for hybrid domains. To il-
lustrate this for MSPNs, we consider computing mutual in-
formation (MI) in hybrid domains. MI also provides a way
to extract the gist of MSPNs as it highlights relevant variable
associations only. Fig. 5 shows the MI network induced over
the Autism Dataset (Deserno et al. 2016), which reflects nat-
ural semantic connections. This not only answers (Q5) affir-
matively but also indicates that MSPNs may pave the way
to automated mixed statisticians: the MI together with the
tree structure of MSPNs can automatically be compiled into
textual descriptions of the model.

To summarize our experimental results as a whole, all
questions (Q1)-(Q5) can be answered affirmatively.

Satisfaction Treatment

Satisfaction Work

Age

Success selfrating

Satisfaction Medication

Age diagnosis

IQ

No of unfinished Educations

Figure 5: Visualizing the Autism MSPN via normalized mu-
tual information (the thicker, the higher). The strong natural
interactions between Age and Age of diagnosis and between
Satisfaction Work and No of unfinished Education are cor-
rectly recovered as in the results of (Haslbeck and Waldorp
2015) using a pairwise mixed graphical model with known
parametric forms from the exponential family (Yang et al.
2014). Node colors encode different feature groups: Demo-
graphics (green), Psychological (blue), Social Environment
(orange) and Medical (red). (Best viewed in color)

Conclusions
The Mixed Sum-Product Networks (MSPNs), are a novel
combination of nonparametric probability distributions and
deep probabilistic models. In contrast to classical shallow
mixed graphical models, they provide effective learning,
tractable inference and enhanced interpretability. Our exper-
iments demonstrate that MSPNs are competitive to parame-
terized distributions as well as mixed graphical models and
make probabilistic queries easier to compute. They allow
users to train multivariate mixed distributions more easily
than previous approaches across a wide range of domains.

MSPNs suggest several avenues for future work: scal-
ing structure learning to large number of instances or high-
dimensional data; learning boosted and mixtures of MSPNs
along with exploring other nonparametric leaves such KDE,
other mixed graphical models, and variational autoencoders,
or extending them to other instances of arithmetic cir-
cuits (Choi and Darwiche 2017); making use of weighted
model integration solvers for capturing more complex types
of queries (Belle, Passerini, and Van den Broeck 2015;
Morettin, Passerini, and Sebastiani 2017). One interesting
avenue is to turn MSPNs into automated statisticians, able
to predict the statistical type of a variable—is it continuous
or ordinal?—and ultimately its parametric form—is it Gaus-
sian or Poisson (Valera and Ghahramani 2017)?

Acknowledgements: The authors would like to thank the
anonymous reviewer for the valuable feedback. This work is
motivated and partly supported by the BMEL/BLE project
DePhenSe, FKZ 313-06.01-28-1-82.047-15. AM has been
supported by the DFG CRC 876 ”Providing Information by
Resource-Constrained Analysis”, project B4. SN has been
supported by the CwC Program Contract W911NF-15-1-
0461 with the US Defense Advanced Research Projects
Agency (DARPA) and the Army Research Office (ARO).
KK acknowledges the support by the Centre for Cognitive
Science at the TU Darmstadt.

References
Bekker, J.; Davis, J.; Choi, A.; Darwiche, A.; and Van den
Broeck, G. 2015. Tractable learning for complex probability
queries. In Proc. of NIPS.
Belle, V.; Passerini, A.; and Van den Broeck, G. 2015. Prob-
abilistic inference in hybrid domains by weighted model in-
tegration. In In Proc. of IJCAI, 2770–2776.
Belle, V.; Van den Broeck, G.; and Passerini, A. 2015.
Hashing-based approximate probabilistic inference in hy-
brid domains. In UAI, 141–150.
Blei, D. M. 2012. Probabilistic topic models. CACM
55(4):77–84.
Cheng, W.; Kok, S.; Pham, H. V.; Chieu, H. L.; and Chai,
K. M. A. 2014. Language modeling with Sum-Product Net-
works. In Proc. of Interspeech.
Choi, A., and Darwiche, A. 2017. On relaxing determinism
in arithmetic circuits. In Proceedings of ICML, 825–833.
Cutler, A., and Breiman, L. 1994. Archetypal analysis. Tech-
nometrics 36(4):338–347.
Deserno, M. K.; Borsboom, D.; Begeer, S.; and Geurts,
H. M. 2016. Multicausal systems ask for multicausal ap-
proaches: A network perspective on subjective well-being
in individuals with autism spectrum disorder. Autism
1362361316660309.
Elidan, G. 2010. Copula bayesian networks. In Proc. of
NIPS.
Frisen, M. 1986. Unimodal regression. Journal of the Royal
Statistical Society. Series D 35(4):479–485.
Gebelein, H. 1941. Das statistische Problem der Korrela-
tion als Variations- und Eigenwertproblem und sein Zusam-
menhang mit der Ausgleichsrechnung. Zeitschrift fur Ange-
wandte Mathematik und Mechanik 21(6):364–379.
Gens, R., and Domingos, P. 2013. Learning the Structure of
Sum-Product Networks. In Proc. of ICML.
Gower, J. C., and Gower, J. C. 1971. A general coefficient
of similarity and some of its properties. Biometrics.
Haslbeck, J. M. B., and Waldorp, L. J. 2015. mgm:
Estimating time-varying mixed graphical models in high-
dimensional data. ArXiv 1510.06871.
Heckerman, D., and Geiger, D. 1995. Learning bayesian
networks: a unification for discrete and gaussian domains.
In Proc. of UAI.
Langseth, H.; Nielsen, T. D.; Rumı, R.; and Salmerón, A.
2012. Mixtures of truncated basis functions. International
Journal of Approximate Reasoning 53(2):212–227.
Lauritzen, S., and Wermuth, N. 1989. Graphical models for
associations between variables, some of which are qualita-
tive and some quantitative. Annals of Statistics 17(1):31–57.
Lopez-Paz, D.; Hennig, P.; and Schölkopf, B. 2013. The
randomized dependence coefficient. In Advances in neural
information processing systems, 1–9.
Molina, A.; Natarajan, S.; and Kersting, K. 2017. Pois-
son sum-product networks: A deep architecture for tractable
multivariate poisson distributions. In Proc. of AAAI.

Moral, S.; Rumi, R.; and Salmerón, A. 2001. Mixtures of
truncated exponentials in hybrid bayesian networks. In Ben-
ferhat, S., and Besnard, P., eds., Proc. of ECSQARU.
Morettin, P.; Passerini, A.; and Sebastiani, R. 2017. Ef-
ficient weighted model integration via smt-based predicate
abstraction. In Proc. of IJCAI.
Peharz, R.; Tschiatschek, S.; Pernkopf, F.; and Domingos, P.
2015. On theoretical properties of sum-product networks. In
Proc. of AISTATS.
Póczos, B.; Ghahramani, Z.; and Schneider, J. G.
2012. Copula-based kernel dependency measures. arXiv
1206.4682.
Poon, H., and Domingos, P. 2011. Sum-Product Networks:
a New Deep Architecture. Proc. of UAI.
Rahimi, A., and Recht, B. 2009. Weighted sums of random
kitchen sinks: Replacing minimization with randomization
in learning. In Proc. of NIPS.
Rényi, A. 1959. On measures of dependence. Acta mathe-
matica hungarica 10(3-4):441–451.
Rooshenas, A., and Lowd, D. 2014. Learning sum-product
networks with direct and indirect variable interactions. In
Proc. of ICML, 710–718.
Rozenholc, Y.; Mildenberger, T.; and Gather, U. 2010. Com-
bining regular and irregular histograms by penalized likeli-
hood. Comp. Statistics & Data Analysis 54(12):3313–3323.
Sanner, S., and Abbasnejad, E. 2012. Symbolic variable
elimination for discrete and continuous graphical models. In
Proc. of AAAI.
Shenoy, P., and West, J. 2011. Inference in hybrid bayesian
networks using mixtures of polynomials. International Jour-
nal of Approximate Reasoning 52(5):641–657.
Thurau, C.; Kersting, K.; Wahabzada, M.; and Bauckhage,
C. 2012. Descriptive matrix factorization for sustainability
adopting the principle of opposites. DAMI 24(2):325–354.
Tolosana-Delgado, R.; Otero, N.; Pawlowsky-Glahn, V.; and
Soler, A. 2005. Latent compositional factors in the llobre-
gat river basin (spain) hydrogeochemistry. Math. Geology
37(7):681–702.
Tsamardinos, I.; Brown, L. E.; and Aliferis, C. F. 2006. The
max-min hill-climbing bayesian network structure learning
algorithm. MLJ 65(1):31–78.
Valera, I., and Ghahramani, Z. 2017. Automatic discovery
of the statistical types of variables in a dataset. In ICML.
Vergari, A.; Di Mauro, N.; and Esposito, F. 2015. Simplify-
ing, Regularizing and Strengthening Sum-Product Network
Structure Learning. In Proc. of ECML-PKDD.
Vergari, A.; Di Mauro, N.; and Esposito, F. 2016. Vi-
sualizing and understanding sum-product networks. arXiv
1608.08266.
Yang, E.; Baker, Y.; Ravikumar, P.; Allen, G.; and Liu, Z.
2014. Mixed graphical models via exponential families. In
Proc. of AISTATS.
Zhao, H.; Melibari, M.; and Poupart, P. 2015. On the Rela-
tionship between Sum-Product Networks and Bayesian Net-
works. In Proc. of ICML.

