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Abstract— Movement Primitives are a well studied and
widely applied concept in modern robotics. Composing prim-
itives out of an existing library, however, has shown to be
a challenging problem. We propose the use of probabilistic
context-free grammars to sequence a series of primitives to
generate complex robot policies from a given library of prim-
itives. The rule-based nature of formal grammars allows an
intuitive encoding of hierarchically and recursively structured
tasks. This hierarchical concept strongly connects with the way
robot policies can be learned, organized, and re-used. However,
the induction of context-free grammars has proven to be a
complicated and yet unsolved challenge. In this work, we exploit
the physical nature of robot movement primitives to restrict
and efficiently search the grammar space. The grammar is
learned with Markov Chain Monte Carlo optimization over the
posteriors of the grammars given the observations. Restrictions
over operators connecting the search define the corresponding
proposal distributions and, therefore, guide the optimization
additionally. In experiments, we validate our method on a
redundant 7 degree-of-freedom lightweight robotic arm on tasks
that require the generation of complex sequences of motions out
of simple primitives.

I. INTRODUCTION

Movement primitives (MPs) are a well established concept
in robotics. MPs are used to represent atomic, elementary
movements and are, therefore, appropriate for tasks consist-
ing of a single stroke-based or rhythmic movement [1]. They
have been used in a large variety of applications, e.g., table
tennis [2], pancake flipping [3] and hockey [1]. For more
complex tasks, however, a single MP is often not sufficient.
Therefore, complex scenarios require sequences of MPs for
feasible solutions.

Considering a set or library of MPs, such sequences
can be generated in a variety of ways, including Hidden
Markov Models [4], Mixture Models [5] and other hierar-
chical approaches [6]. These approaches can be regarded as
mechanisms that produce sequences of MPs. This perspective
reveals a common, important downside: understanding these
mechanisms requires a significant amount of expert knowl-
edge. However, a declared goal of robotics is the deployment
of robots into scenarios where a direct or indirect interaction
with non-expert users is required. Therefore, more intuitive
sequencing mechanisms for non-experts are necessary.

ntelligent Autonomous
64289 Darmstadt, Germany,
peters}@ias.tu-darmstadt.de

2ATR Computational Neuroscience Labs, 2-2-2 Hikaridai Seika-sho,
Soraku-gun, Kyoto 619-0288, Japan, g .maeda@atr. jp

3Centre for Cognitive Science, TU Darmstadt, 64289 Darmstadt, Ger-
many, kristian.kersting@cogsci.tu-darmstadt.de

4Intelligent Systems, Max Planck Institute, 72070 Tbingen, Germany

Systems, TU Darmstadt,
{lioutikov, veiga,

L

MOVE (1.0000)

pick_near TO (0.4000) | pick_far TO (0.6000)
LEFT home (0.4667) | RIGHT home (0.5333)
close place_left open (1.0000)

close place_right open (1.0000)

Induced grammar

Fig. 1: The robot executes a turn in the tic tac toe game. The
turn is represented as a sequence of movement primitives.
The sequence was generated by a probabilistic context free
grammar, learned from previously labeled observations.

This work proposes the use of formal grammars for the
sequencing of MPs. In particular, we focus our attention
on probabilistic context free grammars (PCFGs) and pro-
pose a method to induce PCFGs from observed sampled
sequences of primitives. Formal grammars represent a formal
description of symbols and rules, representing the structure
of a corresponding language. They have been intensively
studied in both natural language processing and compiler
construction but have also been applied in a variety of
fields, e.g., molecular biology [7], bioinformatics [8], com-
puter vision [9] and robotics [10], [11]. PCFGs allow the
implicit embedding of hierarchies within the rules of the
grammar associating every produced sequence with at least
one corresponding parse tree. Such a parse tree represents
the derivation of the produced sequence in an intuitive way.
Figure [1| shows a learned grammar for placing a stone in a
game of tic tac toe, including a parse tree for a produced
primitive sequence.

However, the understandability of the grammar itself de-
pends on the size of both the grammar, i.e., the number of
possible productions, as well as the length of each possible
production. The induction of concise but expressive gram-
mars is considered non-trivial and in the context of natural
language even an ill-posed problem. A common approach to
grammar induction is to formulate the problem as a search
problem where each possible grammar is a node in the search
space and a set of operators generate the edges between
those nodes. This search space can then be traversed through
different search methods where a scoring function determines



the quality of each grammar. Stolcke et al. [12] suggested to
formulate the problem as a Maximum-a-posteriori estimation
where the scoring is defined as the posterior given the
observations. In order to reduce the possibility of getting
stuck in bad local optima the search space was traversed via
beam search, but this method is still prone to finding local
solutions. In this work we formulate the search as a Markov
Chain Monte Carlo (MCMC) optimization similarly to [13],
where the scores are defined as posteriors over the grammars
given the observations.

This paper exploits the structure inherently presented in
the physical motions to ease the learning of grammars. We
assume each segment of the observed sequences to be a sam-
ple from an underlying library of movement primitives (e.g.
[5], [14]). Due to the considerably small size of a primitive
library compared to the corpus of a natural language, the
observed sequences of even complex tasks show a simpler
structure than a natural language sentence. Furthermore, the
type of a movement primitive, e.g., hand movement, arm
movement can be easier deduced than the type of a word,
e.g., verb, noun. In general, the different types of primitives
can be determined automatically by identifying its principal
components.

An important restriction, improving the induction of gram-
mars for movements is that any produced sequence has to
result in a continuous trajectory inside the state space. There-
fore, any grammar that would produce a jump in the state
space is invalid and has to be removed from consideration.
In this work we avoid such grammars directly by restricting
the operators to only produce valid grammars.

The contributions of this work are the induction of
Probabilistic Context Free Grammars for the sequencing of
movement primitives. The posteriors are computed using a
novel prior distribution that not only takes advantages of the
physical constraints presented in the domain of movements,
but also avoid the many pitfalls of existing methods based on
minimum description length and Dirichlet distributions (refer
to Section II). The search is formulated as a Markov Chain
Monte Carlo optimization where the proposed distributions
are defined through restrictions put upon the operators con-
necting the grammar search space. Differently from methods
based on greedy beam search (e.g. [12]), MCMC is a global
optimizer.

II. RELATED WORK

Movement primitives are usually used to solve tasks con-
sisting of single, atomic stroke-based or periodic movements
[1]. For more complex tasks, however, a sequence of primi-
tives has to be applied. An example of such a complex task is
the grasping, positioning, and cutting of a vegetable [15] with
Dynamical Movement Primitives (DMPs) [16]. However, in
that work the sequences were not learned, but predefined. An
approach combining the segmentation of observations and
the learning of a sequencing mechanism is presented in [4].
The primitives are encoded using Hidden Markov Models
and a graph structure is learned during the segmentation. This
graph can be used subsequently to sequence the primitives.

Another approach featuring a sequence graph was presented
in [17]. The graph is learned from demonstrations through
an agglomerative clustering scheme. In [18] a hierarchical
version of the Relative Entropy Policy Search algorithm [19]
is introduced, capable of learning gating-policies to sequence
DMPs. In this work, we propose probabilistic context-free
grammars as a means of sequencing movement primitives.
However, grammars bring the advantage of being a general
method capable of representing hierarchies in a principled
and intuitive manner.

Motion grammars [10] are extensions of context free
grammars modeling the discrete and continuous dynamics
of hybrid systems. However the grammars introduced in
[10] are predefined and aim at fast task verification. In [11]
a probabilistic context free grammar is used to sequence
discrete actions. Analogously to [12] the grammar is learned
by applying a beam search for the maximal posterior inside
the grammar space. The grammar space is traversed by
applying the merge and chunk operators [12] of observed
sequences (these operators will be defined in detail in Section
IID). In contrast to [12] a n-gram like frequency table is used
to determine reoccurring patterns in the observations, hence,
identifying candidate productions for the chunk operator. To
avoid unintuitively compact grammars the prior definition,
originally defined solely by the minimal description length,
was extended by a log-Poisson term similar to [20].

While sharing the motivation of learning intuitive, proba-
bilistic context free grammars for primitive sequencing, our
work differs in several ways from [11]. In this work, we use
a stochastic movement primitive representation and actively
take advantage of its properties to induce the grammar.
Here, we deviate from the common structure prior definition
as an exponential distribution over the minimal description
length and define the entire prior as a combination of several
Poisson distributions. Furthermore, we use an Markov chain
Monte Carlo optimization to find the grammar maximizing
the posterior, similarly to [13], which is more robust to local
optima than a beam-search.

The grammar induction approach described in [13] uses
the Metropolis-Hastings algorithm [21] to learn grammars
describing design in various domains, such as websites and
geometric models. They do not use the grammar learning
in any robotics context. Moreover, they define the prior
using the description length. Our proposed approach differs
significantly in the structure of the observed sequences. In
[13], the observations and, hence, the starting points of
the grammar induction are already hierarchical structures.
Therefore, it is sufficient to traverse the grammar space
using solely the merge and split operators. These operators
allow the generalization and specialization of grammars, but
are not able to introduce new hierarchies like the chunk
operator [12]. In this work, we apply all three operators.
To achieve the required irreducibility of the Markov chain
we additionally introduce the insert operator, negating the
effects of the chunk operator. The meaning of the operators
shall become clear in the next section.



Fig. 2: The grammar space & contains all valid grammars
G°...G*. The space is traversed by applying operators op €
O = {merge, split, chunk, insert} on the current grammar.
For every operator op generating G’ from G. There exist an
op that generates G from g, e.g., merge = split, chunk =
insert.

III. BACKGROUND

Before showing how to induce the probabilistic language
of movements, this section briefly presents the principal
concepts of probabilistic conect free gramms (PCFGs). A
PCFG is a 4-tuple G = (A, V,R,S), consisting of a set of
terminals A = {al, ag,as,. .. ,aw} , a set of nonterminals
V= {Al,AQ,Ag, .. .,AM}, a set of starting symbols S C
V, and a set of production rules R = {(A4,R4, p4)|A € V}.
The ordered set R4 € ((AUV)")Ral is referred to as the
productions of the nonterminal A € V and the elements p €
p 4 of the multinomial p, € AR4l=1 are the probabilities
or parameters of A. A common example grammar is the one
describing the language a”b"

Gg=(AV,R,S),
A={a,b}, V={4}, S={4},

R= { (A, (ab, aAb).,[0.7, 0.3]T) } .

This grammar describes the language of all sequences that
consist of any number of as followed by the same number
of bs. An alternative, more common but less formal notation
for the rule set is

R={A—ab
A — aAb

[07]7
[0.3]3,

which illustrates, the function of a rule. The nonterminal on
the left hand side, A, can produce the sequences ab and
aAb on the right hand side with a probability of 0.7 and 0.3
respectively.

Learning formal grammars from sequences of terminals
is referred to as grammar induction. Commonly the task
is formulated as a search through a grammar space &,
where the connections between grammars are represented
as different operators. Such operators manipulate the set of
production rules R and the set of nonterminals ) accord-
ingly. Starting from an initial grammar G° these operators
are used to traverse the grammar space, searching for the
optimal grammar G*. Various search strategies have been

suggested, e.g. beam search [12], [11] and Markov chain
Monte Carlo optimization [13].

IV. INDUCING A PCFG FOR MOVEMENT PRIMITIVES
Given a set of primitives © = {61,05,03,...,0¢
and a set of labeled demonstrations D =
{di,ds.ds,...,dp||d; € ©F}, the goal is to learn

the PCFG G* that maximizes the posterior

G* = argmgaxp(g|D) . (D

In this work, we define the set of terminals as the set of prim-
itives A = O. During the learning of the grammar the ter-
minals, and, hence the primitives are considered immutable,
implying that the search space consists of grammars that only
differ in S, V or R. Each grammar represents a node in the
grammar space &, while the directed edges between nodes
are defined by operators. Operators manipulate the rule set
R of a grammar G and consequently create a new grammar
G’'. The grammar space & is illustrated in Figure |2| In this
work we apply four different operators spanning &, that are
described in more detail below. Furthermore, a Markov chain
Monte Carlo optimization is used to find the grammar G that
maximizes the posterior p (G|D).

A. Learning grammars through posterior optimization

The posterior p (G|D) describes how probable a given
grammar G is given the observed sequences D. By applying
Bayes theorem we can reformulate the posterior, and, hence
the maximization as

G" = arg mgaXp(QID), 2
= arg mgXp(DI g)p(9), 3)

where p (D|G) is the likelihood of the labeled demonstra-
tions D given the grammar G, as presented in Section
In Section we discuss common choices for the prior
p(G). We finally introduce a novel grammar prior based on
Poisson distributions in Section

1) The likelihood p (D] G): is computed for each demon-
stration independently, yielding

p(016) = [[ p(d9). )
deD

Depending on the grammar G the sequence d could have
been produced in multiple ways. Considering every possible
derivation results in the sum-product formulation

> I »

Teparse(d,G) (A,r,p)eT

1
P e @ o

where T represents a single parse tree and parse(d, Q)
denotes a function producing all feasible parse trees. The
3-tuple (A,r,p) represents an edge in the parse tree 7
connecting the nonterminal A and its production 7 € R4
with a probability of p € p,4. In this work the function parse
creating all possible parse trees for a given demonstration d
is implemented by the Earley parser [22]. While the Earley
parser suffers from a higher complexity compared to other



parsers, it has the advantage that the parsed grammars do not
have to be any particular form.

2) Commonly the grammar prior p(G): is modeled
as a joint distribution over the grammar probabilities

pg = {palAcV} and the grammar structure Gr =
{(A,Ra)[A € V} [12], [20], [13], [11],
p(9)=p(pg|Gr) P (Gr). 5)

The conditional p (pg|Gr) itself can be modeled as an
independent joint distribution over the parameters of each
nonterminal A € V,

IT »ea) ©6)

PAEPg

Pg‘ QR

The dependency on the grammar structure is implicit, since
the probabilities p4 € pg depend on both the set of
nonterminals V' and the productions for each nonterminal
R4. The parameters for each nonterminal p, € pg form
a multinomial distribution, i.e., ) peps P = 1. Therefore,
a Dirichlet distribution would be an obvious choice for
the probability distribution over the parameters p (p,) for
a single nonterminal A € V. A significant drawback of
using a Dirichlet distribution is its factorial growth in the
dimensionality of the multinomial. In fact using an uninfor-
mative Dirichlet distribution, i.e. setting the concentration
parameters to 1.0 will result in a probability density of
p(p4) = (dim(p,) — 1)! for any p, € pg.

To compensate for this growth the structure prior p (Gr)
is usually modeled as an exponential distribution over the
minimal description length (MDL) of the grammar structure
Gr. Every symbol in the production rules, terminal and
nonterminal, contribute to the MDL with log, (|A| + |V])
bits, yielding the over all description length

MDL(Gr)= > Y MDL(r)
(ARa)eEGR TERA
MDL (r) = (1 + |r[) log, (|A] + [V]) .

A prior p (Gr) defined as an exponential distribution over the
MDL (G) will prefer small and concise grammars. However,
such a prior can lead to grammars that are too compact to
be intuitive for non-experts. In order to prefer grammars
with a desired production length, 7,, the MDL has been
extended with the log of a Poisson distribution with mean
7,[20], [11]. Because of the factorial growth of the parameter
prior p (pg| QR) the structure prior is often additionally
amplified with an exponential weighting term [13] to remain
of significance for the overall grammar prior p(G) and,
hence, the posterior p (G| D).

The likelihood p (D] G) is defined as a product over the
average of probabilities, which always results in p (D] G) <
1.0. However, the described grammar prior p(G) is the
product of two probability densities, which will very quickly
result in p (G) > 1.0 and therefore dominate the posterior.

3) The novel prior: presented in this paper aims at induc-
ing PCFGs, which are easily understandable for non experts.
The key to achieving this goal is the grammar structure,

rather than the grammar parameters. Therefore, we suggest
a grammar prior, that does not explicitly model a Dirichlet
distribution over the parameters but instead implicitly con-
siders the parameters in the overall grammar prior p (G). We
therefore, model the parameter prior and the structure prior

jointly p (G) =p (pg, Gr) as
R
(AvRA;pA)ER
N
Y(A,Ra,pa) =p(Rallnr)p (Ralpa,nr) (8)

where the probabilities over the number of rules p (|R||nr)
and the size of each rule p (|R||nr) are modeled as Poisson
distributions with means 1 and 7g. The probability of each
rule is modeled as a weighted average

>

r€RA,pEP

p(Ralpa,n) = p(|rn-) )

over the probabilities of the corresponding productions. The
weighting is given by the grammar parameters p € p, and
the probability of each production corresponds to the Poisson
distribution over its length p (|7||7;), given a desired produc-
tion length 7,.. Since all components are defined as discrete
probabilities, the prior is always p (G) < 1, eliminating the
need for hard to tune weighting terms to cope with difficult
scaling properties. Furthermore, the prior p(G) will now
prefer grammars with nr productions per nonterminal with
an average length of 7, symbols per production. The hyper-
parameters 7g, 7, can be set to achieve a desired simplicity
of the grammar. By weighting each production » € R4 with
the corresponding grammar parameter p € p 4 the prior gives
more significance to production which are more likely to
occur.

B. Traversing the grammar space

To find the optimal grammar G*, it is necessary to define
mechanisms that generate new grammars. A common choice
is to define operators op € O, where O denotes the set of all
operators. Each operator op manipulates the rule set R and
consequentially the nonterminal set V of a given grammar G,
therefore, creating a new grammar G’. For each operator op
we define a domain 2, that op can act upon. The elements
in Q,;, depend on the operator itself and can be for instance
nonterminals, pairs of nonterminals or productions.

Each grammar represents a node in a grammar space
®. The operators op € O represent directed edges in &
between two grammars. The grammar space & is illustrated
in Figure[2} After a grammar G’ was created by applying an
operator op on grammar G, the grammar parameters usually
have to be recomputed. In this work, the parameters are re-
estimated for every new grammar G’ via the Inside-Outside
algorithm [23].

Not every possible grammar G is suitable for sequencing
movement primitives. Every sequence produced by G has to
guarantee a smooth, continuous trajectory within the state
space of the MPs. In general, this means that precedent



primitives should finish somewhat closer to the beginning
of the next primitive.

We restrict the grammar space & to only contain grammars
that fulfill this continuity requirement. The restriction is
achieved by limiting the domain ), of each operator op &
O, such that if grammar G fulfills the continuity requirement
any grammar G’ resulting from an application of op on G
also fulfills the requirement. Two common operators are the
merge and split operators.

1) split: divides the nonterminal A; € Qg into two
new nonterminals A;, Ay. The productions R 4, are separated
randomly into two corresponding, disjoint sets R, and
Ra,. where none of the two resulting sets is empty. Each
occurrence of A; is randomly replaced by either A; or Ay,
where both A; and A; have to be selected at least once.
The domain pj;¢ contains all nonterminals with at least
two productions. Furthermore, every nonterminal in gpjis
has to occur at least twice across all productions, including
its own.

2) merge: combines two nonterminals (A;, Ay) €
Qmerge into a new nonterminal A;. Correspondingly the pro-
ductions of A; are defined as the union R4, = Ra; URa4,.
Every occurrence of A; and Aj is replaced by A;. If
A; and Aj contain production that begin or end in very
different MP state spaces a merging would endanger the
continuity requirement. We avoid this problem by restricting
the domain €,erge. The domain €2erge contains only pairs
of nonterminals (A;, Ay), where all productions R A, URA,
begin and end around a similar MP state space.

The split and merge operators negate each other and
are capable of generalizing exiting hierarchies in grammars,
however they lack the important ability to create new hierar-
chies. Therefore, we additionally utilize the chunk operator
[12] and define the new insert operator that negates the
effects of chunk.

3) chunk: creates a new nonterminal A with productions
Ra={r},re (AUV)Jr A7 € Qchunk. Every occurrence
of the sequence r in and production in R is replaced by A.
The domain Q,unx contains all possible subsequences of all
productions in R.

4) insert: selects a nonterminal A € Q¢+ and replaces
each occurrence of A with its production r € R4. The
domain (2,4t contains all nonterminals with exactly one
production.

Given these four operators, we define the set of all
possible operators as O = {merge, split, chunk, insert}.
Furthermore, the operators in O are not exchangeable i.e., if
a grammar G’ was created by applying the operator op on
grammar G, there exists no operator in O\ {op} that is able
to produce G’ from G.

C. Finding G*

Similarly to [13] we search for the optimal grammar
G* = argmaxg p (G|D) using an Markov chain Monte Carlo
optimization. However, Talton et al. [13] already expected
hierarchical inputs, restricting the grammar search to a
reorganization of already existing productions by applying

solely the merge and split operators. Given that our inputs
are flat sequences, that is, pure sequences without hierarchy,
of observed primitive samples, we additionally apply the
chunk operator, that is capable of creating hierarchies [12].
The insert operator ensures the irreducibility of the Markov
chain. Analogously to [13], we apply the Metropolis Hastings
algorithm. However, since [13] solely uses the split and
merge operator, the paper directly defines the proposal distri-
butions ¢ (g” g) as the probability of an split or an merge.
In this work we define the proposal distribution as a mixture
over the four operators @ = {merge, split, chunk, insert},

q(G"00'[G) = Y p (oG, nop) dop (6] G, 0D') ,

opeO

with mixture components gop, (G'| G, 0p’). The mixture prob-
ability is defined as

Nop’ (1 - 5\Qop,|)
DopcosTop (1= 30,,])

where 7., € R is a weighting for the operator op, |,
denotes the Kronecker delta over the size of the domain
Q,p for operator op. Given that the operators in O are not
exchangeable, a mixture component gy, (g’ ‘ G,op’ ) should
not contribute any probability mass if op # op’. This
restriction is achieved by the Kronecker deltas dop op in the
following mixture components.

1) gspiit (G'| G,op’): Given that the split operator was
applied to produce G’ from G, there exist 4; € V and
Aj A € V’. The chance of randomly selecting A; € Qqplit
is 1/|Qspiit|. Additionally every production r € Ry,
was randomly assigned to either R4, or Ra,, while
each of those two sets had to be selected at least once,
resulting in the hypergeometric probability H Ra| =
H (‘RAJ'H2 (‘RAI-| -1), ‘RAi| —1, ‘RAJ.‘ + |RAk| .
Finally, the N4, occurrences of A; across all
productions in R have been replaced by N4, and
Ny, occurences of A; and Ay in R/, contributing
yet another hypergeometric probability Hy 4, =
H (Na,|2(Na, —1),Na, —1,Na, + Na,). The overall
probability of G’ being produced from G by using a split
operator is given as:

p(0p'| G, Nopr) = (10)

Jop’ spli
Goie (G| G 00) = TG H  Hov, (D)

B |Qsplit|

2) Gmerge (Q" g,op’): The only stochastic part in the

merge operator is the decision which pair (4;, 4;) € Qq,, is
selected, therefore the probability for merge is given as

Oon/
dmerse (01| G op) = Sovrmerse

= (12)
|Qmerge|

3) genunk (G| G, 0p'): Given that the domain Qcnynk al-
ready contains all possible subsequences of all productions
in R, the probability for choosing one sequence at random
is
5op/ ,chunk

Gchunk (gl| gv Op/) =

- . (13)
|Qchunk|



(a) pick_near (b) pick_far

(c) place_left

(e) home

(d) place_right

Fig. 3: The five arm primitives used to sequence a turn in the tic tac toe game.

START — DEMO1 (0.25) | DEMO2 (0.25) |

DEMO3 (0.25) | DEMO4 (0.25)
DEMO1 — pick_far close place_right open home (1.00)
DEMO2 — pick-near close place_right open home (1.00)
DEMO3 — pick-far close place_left open home (1.00)
DEMO4 — pick-near close place_left open home (1.00)

(a) [Initial grammar. Grammar index 0 in Figure 5[

START — MOVE (1.00)

MOVE —  pick-near TO (0.40) | pick_far TO (0.60)
TO — LEFT home (0.47) | RIGHT home (0.53)
LEFT — close place_left open (1.00)

RIGHT — close place_right open (1.00)

(b) Influced grammar. Grammar index 171 in Figure 3|

Fig. 4: (a) The initial grammar for learning a tic tac toe turn.
(b) The grammar with the best posterior after 400 iterations
of the MCMC optimization.

4) Ginsert (g’] G,op’ ) The domain Qj,sert is already re-
stricted to nonterminals with a single production, therefore
the probability of insert is simply

6 /i
Gusert (6] G, 0p') = 5.
mser

At every iteration of the Metropolis-Hasting algorithm a
random new grammar is sampled from the proposal distri-
bution G’, 0p’ ~ ¢ (G', op’ | G). This new grammar is then
accepted with a probability of

p(G'D)""" q(g,00| 9')>
p(GID)/" 4 (¢ 0r'|G) )

(14)

acc (G, op" G) = min (1,
(15)

where T denotes a decaying temperature and op’ denotes the
complementary operator to op/, i.e. split = merge, chunk =
insert. If the new grammar was accepted it is set to the
current grammar G < G’ and the next iteration begins. After
a defined number of iterations, the grammar with the highest
posterior is returned.

V. EXPERIMENTS

We evaluated the proposed approach on two real robot
task. First, we induced a grammar producing turns of the
tic-tac-toe game. Second, we learned a grammar that assists
a human with the assembly of a simple toolbox. In both
tasks the necessary primitives were encoded as Probabilistic
Movement Primitives [1]. For each of the tasks we compare
the posterior resulting from our proposed prior, Grammar
Poisson , with the one resulting from three common structure
prior choices, MDL , Poisson + MDL , Avg. Poisson . The
MDL prior is simply defined as an exponential distribu-
tion with the MDL as its energy [13]. The the Poisson

a) Grammar
Poisson
=}
o
|

b) MDL
o
o [ =
| | |
—_—
— —

g.q !
29 - !
‘EE 0.5 I
,(-)\ 07 |}
1A ]
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R ) N
=
g 1 ‘
5 ]
T 0.5 x
-:i |
. 1
© 0 \ \ \ \ \ \ \
0 50 100 150 200 250 300

Grammar index

Fig. 5: The posteriors and the likelihood for the tic tac toe
turn grammar. The vertical, dashed line indicates the index
of the highest posterior (171), given the presented Poisson
prior.

+ MDL prior weights the description language for every
production with the Poisson probability over the length of
the production [20]. Finally the Avg. Poisson prior discards
the MDL completely and is solely represented by a Poisson
distribution over the average length of all productions [11]. A
major difference of the Grammar Poisson prior to the other
discussed priors is that we do not model the distribution over
the grammar parameters as a Dirichlet distribution but rather
use them as a weighting for the average production length.

A. Learning a Grammar for Tic Tac Toe Turns

In this task we learned a grammar that allows the robot
to play tic tac toe against a human. Each produced sequence
corresponds to one turn of the game, i.e. picking a stone,
closing the hand, placing the stone on the field , opening
the hand and returning back to the home position. The goal
is not to learn the logic behind the game but rather the
induction of an intuitive grammar producing valid turns. The
segmentation of the demonstrations and, hence, the learning
of the primitives was done beforehand via Probabilistic Seg-
mentation [5]. The five resulting arm primitives are shown in



(b) take_screw

(c) give_board

(e) home

(d) give_screw

Fig. 6: The arm primitives of the box assembly task.
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Fig. 7: The posteriors and the likelihood for the box assembly
task. The vertical, dashed line indicates the index of the
highest posterior (160), given the presented Poisson prior.

Figure 3] where the green and blue highlighted areas mark
the start and end of the end-effector.

The grammar learning was initialized with 16 observations
of four unique sequences, each consisting of five terminals.
The initial grammar is shown in Figure[@al We initialized our
approach with a desired number of rule ng = 5, the desired
number of average productions per rule ng = 2 and the de-
sired average length of each production 7, = 3. The weights
for each operator were set uniformly to 7., = 1,0p € O.
The MCMC optimization was run for 400 steps and resulted
in 324 accepted grammars. The corresponding normalized
posteriors are shown in Figure [5a) and the grammar with the
highest posterior, grammar index 171 is shown in Figure b}
The induced grammar intuitively represents, that each pro-
duced sequence will move a near or a far stone to either
the left or the right side of the playing field. Furthermore,
after every closing of the hand there will be a later opening
of the hand. A possible sequence produced by the grammar,
including the corresponding parse tree is seen in Figure [T}
For simplicity the naming of the nonterminals was chosen
manually after the grammar learning. An automated naming
of the nonterminals corresponding to the semantics of the
productions is outside of the scope of this paper and remains

part of future work. Figure [5b-d| shows the normalized
posteriors corresponding to the three common priors. The
x-axis corresponds to the different grammars traversed dur-
ing the MCMC optimization, i.e. the grammar G op’ ~
q(G',0p'| G"~") was sampled from the proposal distribution
around G*~! by applying op’. The spiky behaviour of the
posteriors (b-d) is due to the uninformative Dirichlet prior for
the grammar parameters and the exponential distribution over
the M DL. Both of these factors can change significantly
with a small change in the grammar, e.g. a merge creating
a rule with many productions or a chunk reducing the
length of a long production. Furthermore, it is noticeable
that the likelihood of the grammar p (G'|D) does not play
significantly into the posteriors of (b-d). This behaviour,
is explained by the fact that the likelihood as defined in
Equation [(4)] is a probability mass function, whereas the
three priors are products of probability density functions. Our
proposed prior however, is by definition a probability mass
function, averaging over multiple Poisson distributions. Our
posterior takes the likelihood and, therefore, the observations
much stronger into account.

B. Learning a Grammar for a Simple Toolbox Assembly

This task shows the abstraction capabilities of our ap-
proach. The demonstrations were again segmented before-
hand and resulted in the five arm primitives, shown in
Figure [6] and four hand primitives, closing and opening the
hand for both a board and a screw grasp. The set of demon-
strations contained three different sequences, consisting of
40 terminals each. Every observation showed the grasping
and handing over of four boards and four screws, either
alternating between the board and the screw or starting with
two boards and alternating subsequently. The approach was
initialized with ng = 9, ng = 2, n, = 2. The weights
for the split and merge operators were set to 1 and the
remaining two were set to 2. The MCMC optimization ran
for 400 iterations and 303 grammars were accepted. The



posteriors for the accepted grammars are shown alongside
the likelihood in Figure The posteriors show similar
behavior as in the previous task. Both the MDL and the
Poisson + MDL have a maximum at 162, indicating that the
corresponding grammar has the minimal description length
of all accepted grammars. The Avg. Poisson prior has its
maximum at 44 du to a average production length close to
1. However, the corresponding grammar contains 14 rules
with one production each. The grammar with the maximum
posterior according to the Grammar Poisson prior is given
at index 160 and presented in Figure [§] The grammar
abstracts a full turn from taking a board or screw until
going back to the home position. This subsequence was not
marked in any way and was detected as a consequence of
the grammar learning. The sequence occured multiple times
during each oservation. Abstracting it into a nonterminal will
therefore simplify the grammar significantly. Furthermore,
the grammar encodes that a grasping of a board or a screw
through the closing of the hand has to be eventually followed
by the corresponding opening of the hand. The alternation
between handing over a board and a screw is represented
in the two rules for SBS and BSB and the rules for
ASSEMBLE_SB. The option of starting with two boards
is encoded in ASSEMBLE _BB.

VI. CONCLUSION

In this work, we introduced probabilistic context free
grammars as a mechanism to sequence movement primitives.
The paper presents an approach to induce such grammar
from flat sequences of movement primitive samples, i.e.,
no hierarchy in the observations, while taking advantage
of a stochastic primitive representation. The new introduced
grammar prior is defined over several coupled Poisson dis-
tributions, and eliminates the many complications that arise
from both Dirichlet parameter priors and minimal description
length based structure priors. In our method, the hyper-
parameters of the prior have an clear semantic interpretation,
namely the number of productions for each nonterminal and
the average length of each production. The optimal posterior
is learned using a Markov chain Monte Carlo optimization
where the proposal distribution is formulated as a mixture
model over four operators while avoiding local solutions.
The learned grammars are simple and intuitive as evaluated
in several experiments on a real robot platform.
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